Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Br J Haematol ; 192(5): 909-921, 2021 03.
Article in English | MEDLINE | ID: mdl-33528045

ABSTRACT

Lowe syndrome (LS) is an oculocerebrorenal syndrome of Lowe (OCRL1) genetic disorder resulting in a defect of the OCRL protein, a phosphatidylinositol-4,5-bisphosphate 5-phosphatase containing various domains including a Rho GTPase-activating protein (RhoGAP) homology domain catalytically inactive. We previously reported surgery-associated bleeding in patients with LS, suggestive of platelet dysfunction, accompanied with a mild thrombocytopenia in several patients. To decipher the role of OCRL in platelet functions and in megakaryocyte (MK) maturation, we conducted a case-control study on 15 patients with LS (NCT01314560). While all had a drastically reduced expression of OCRL, this deficiency did not affect platelet aggregability, but resulted in delayed thrombus formation on collagen under flow conditions, defective platelet spreading on fibrinogen and impaired clot retraction. We evidenced alterations of the myosin light chain phosphorylation (P-MLC), with defective Rac1 activity and, inversely, elevated active RhoA. Altered cytoskeleton dynamics was also observed in cultured patient MKs showing deficient proplatelet extension with increased P-MLC that was confirmed using control MKs transfected with OCRL-specific small interfering(si)RNA (siOCRL). Patients with LS also had an increased proportion of circulating barbell-shaped proplatelets. Our present study establishes that a deficiency of the OCRL protein results in a defective actomyosin cytoskeleton reorganisation in both MKs and platelets, altering both thrombopoiesis and some platelet responses to activation necessary to ensure haemostasis.


Subject(s)
Blood Platelets/cytology , Megakaryocytes/cytology , Oculocerebrorenal Syndrome/genetics , Phosphoric Monoester Hydrolases/physiology , Thrombopoiesis/physiology , Actomyosin/analysis , Adolescent , Adult , Anemia/etiology , Blood Coagulation , Blood Platelets/ultrastructure , Case-Control Studies , Cell Shape , Child , Collagen , Cytoskeleton/ultrastructure , Female , Gene Silencing , Humans , Male , Megakaryocytes/ultrastructure , Middle Aged , Mutation , Myosin Light Chains/metabolism , Oculocerebrorenal Syndrome/blood , Oculocerebrorenal Syndrome/pathology , Phosphoric Monoester Hydrolases/deficiency , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , Protein Domains , Protein Processing, Post-Translational , RNA, Small Interfering/genetics , Signal Transduction , Thrombocytopenia/etiology , Young Adult
2.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34445542

ABSTRACT

Endoglin (Eng) is an endothelial cell (EC) transmembrane glycoprotein involved in adhesion and angiogenesis. Eng mutations result in vessel abnormalities as observed in hereditary hemorrhagic telangiectasia of type 1. The role of Eng was investigated in endothelial functions and permeability under inflammatory conditions, focusing on the actin dynamic signaling pathway. Endothelial Colony-Forming Cells (ECFC) from human cord blood and mouse lung/aortic EC (MLEC, MAEC) from Eng+/+ and Eng+/- mice were used. ECFC silenced for Eng with Eng-siRNA and ctr-siRNA were used to test tubulogenesis and permeability +/- TNFα and +/- LIM kinase inhibitors (LIMKi). In silico modeling of TNFα-Eng interactions was carried out from PDB IDs 5HZW and 5HZV. Calcium ions (Ca2+) flux was studied by Oregon Green 488 in epifluorescence microscopy. Levels of cofilin phosphorylation and tubulin post-translational modifications were evaluated by Western blot. F-actin and actin-tubulin distribution/co-localization were evaluated in cells by confocal microscopy. Eng silencing in ECFCs resulted in a decrease of cell sprouting by 50 ± 15% (p < 0.05) and an increase in pseudo-tube width (41 ± 4.5%; p < 0.001) compared to control. Upon TNFα stimulation, ECFC Eng-siRNA displayed a significant higher permeability compared to ctr-siRNA (p < 0.01), which is associated to a higher Ca2+ mobilization (p < 0.01). Computational analysis suggested that Eng mitigated TNFα activity. F-actin polymerization was significantly increased in ECFC Eng-siRNA, MAEC+/-, and MLEC+/- compared to controls (p < 0.001, p < 0.01, and p < 0.01, respectively) as well as actin/tubulin distribution (p < 0.01). Furthermore, the inactive form of cofilin (P-cofilin at Ser3) was significantly decreased by 36.7 ± 4.8% in ECFC Eng-siRNA compared to ctr-siRNA (p < 0.001). Interestingly, LIMKi reproduced the absence of Eng on TNFα-induced ECFC-increased permeability. Our data suggest that Eng plays a critical role in the homeostasis regulation of endothelial cells under inflammatory conditions (TNFα), and loss of Eng influences ECFC-related permeability through the LIMK/cofilin/actin rearrangement-signaling pathway.


Subject(s)
Actin Depolymerizing Factors/metabolism , Cell Membrane Permeability , Endoglin/metabolism , Endothelial Cells/pathology , Inflammation/pathology , Lim Kinases/metabolism , Neovascularization, Pathologic/pathology , Actin Depolymerizing Factors/genetics , Animals , Endoglin/genetics , Endothelial Cells/metabolism , Inflammation/genetics , Inflammation/metabolism , Lim Kinases/genetics , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism
3.
Cell Mol Life Sci ; 75(7): 1269-1284, 2018 04.
Article in English | MEDLINE | ID: mdl-29080903

ABSTRACT

Complex interactions between platelets and activated endothelium occur during the thrombo-inflammatory reaction at sites of vascular injuries and during vascular hemostasis. The endothelial receptor endoglin is involved in inflammation through integrin-mediated leukocyte adhesion and transmigration; and heterozygous mutations in the endoglin gene cause hereditary hemorrhagic telangiectasia type 1. This vascular disease is characterized by a bleeding tendency that is postulated to be a consequence of telangiectasia fragility rather than a platelet defect, since platelets display normal functions in vitro in this condition. Here, we hypothesize that endoglin may act as an adhesion molecule involved in the interaction between endothelial cells and platelets through integrin recognition. We find that the extracellular domain of human endoglin promotes specific platelet adhesion under static conditions and confers resistance of adherent platelets to detachment upon exposure to flow. Also, platelets adhere to confluent endothelial cells in an endoglin-mediated process. Remarkably, Chinese hamster ovary cells ectopically expressing the human αIIbß3 integrin acquire the capacity to adhere to myoblast transfectants expressing human endoglin, whereas platelets from Glanzmann's thrombasthenia patients lacking the αIIbß3 integrin are defective for endoglin-dependent adhesion to endothelial cells. Furthermore, the bleeding time, but not the prothrombin time, is significantly prolonged in endoglin-haplodeficient (Eng +/-) mice compared to Eng +/+ animals. These results suggest a new role for endoglin in αIIbß3 integrin-mediated adhesion of platelets to the endothelium, and may provide a better understanding on the basic cellular mechanisms involved in hemostasis and thrombo-inflammatory events.


Subject(s)
Blood Platelets/metabolism , Cell Communication , Endoglin/metabolism , Endothelial Cells/metabolism , Animals , Blood Platelets/cytology , CHO Cells , Cell Adhesion , Cell Line , Cells, Cultured , Cricetinae , Cricetulus , Endoglin/genetics , Endothelial Cells/cytology , Humans , Mice, Inbred C57BL , Mice, Knockout , Platelet Glycoprotein GPIIb-IIIa Complex/genetics , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism
4.
Blood ; 116(25): 5670-8, 2010 Dec 16.
Article in English | MEDLINE | ID: mdl-20829371

ABSTRACT

The effects of Notch signaling on human megakaryocytic and erythroid differentiation were investigated by exposing human CD34(+) progenitor cells to an immobilized chimeric form of the Notch ligand, Delta-like4 (Dll4Fc). Exposure of human cord blood CD34(+) cells to Dll4Fc induced a modest enhancement of erythroid cell production. Conversely, under megakaryocytic culture conditions, Dll4Fc strongly impaired platelet production by reducing the generation of mature CD41a(+)CD42b(+) megakaryocytes (MKs) and platelet-forming cells. The inhibitory activity of Dll4 on terminal MK differentiation was confirmed by culturing CD34(+) cells onto Dll-4-expressing stroma cells (engineered to express the membrane-anchored form of Dll4). The reduced production of mature CD41a(+)CD42(+) cells was rescued by inhibiting Notch signaling either with the N-N-(3,5-difluorophenacetyl-L-alanyl)-S-phenylglycine t-butyl ester γ-secretase inhibitor or the dominant-negative version of Mastermind. Dll4 impaired the generation of mature CD41a(+)CD42b(+) cells and proplatelet formation without affecting earlier steps of MK differentiation, such as production of megakaryocytic/erythroid progenitors and colony-forming units-MKs. This blockade was accompanied by a modulation of the transcriptional program of megakaryocytic differentiation. All these results indicate that Dll4/Notch signaling inhibits human terminal MK differentiation.


Subject(s)
Cell Differentiation , Intercellular Signaling Peptides and Proteins/metabolism , Megakaryocytes/cytology , Receptors, Notch/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cells, Cultured , Coculture Techniques , Erythroid Precursor Cells/metabolism , Fetal Blood/cytology , Fetal Blood/metabolism , Flow Cytometry , Humans , Intercellular Signaling Peptides and Proteins/genetics , Megakaryocytes/metabolism , Mice , RNA, Messenger/genetics , Receptors, Notch/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stromal Cells/metabolism
5.
Sci Adv ; 8(36): eabo6333, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36083912

ABSTRACT

Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.

6.
Blood Adv ; 5(6): 1706-1718, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33720340

ABSTRACT

Blood platelets are essential for controlling hemostasis. They are released by megakaryocytes (MKs) located in the bone marrow, upon extension of cytoplasmic protrusions into the lumen of bone marrow sinusoids. Their number increases in postpulmonary capillaries, suggesting a role for oxygen gradient in thrombopoiesis (ie, platelet biogenesis). In this study, we show that initiation of thrombopoiesis from human mature MKs was enhanced under hyperoxia or during pro-oxidant treatments, whereas antioxidants dampened it. Quenching mitochondrial reactive oxygen species (mtROS) with MitoTEMPO decreased thrombopoiesis, whereas genetically enhancing mtROS by deacetylation-null sirtuin-3 expression increased it. Blocking cytosolic ROS production by NOX inhibitors had no impact. Classification according to the cell roundness index delineated 3 stages of thrombopoiesis in mature MKs. Early-stage round MKs exhibited the highest index, which correlated with low mtROS levels, a mitochondrial tubular network, and the mitochondrial recruitment of the fission activator Drp1. Intermediate MKs at the onset of thrombopoiesis showed high mtROS levels and small, well-delineated mitochondria. Terminal MKs showed the lowest roundness index and long proplatelet extensions. Inhibiting Drp1-dependent mitochondrial fission of mature MKs by Mdivi-1 favored a tubular mitochondrial network and lowered both mtROS levels and intermediate MKs proportion, whereas enhancing Drp1 activity genetically had opposite effects. Reciprocally, quenching mtROS limited mitochondrial fission in round MKs. These data demonstrate a functional coupling between ROS and mitochondrial fission in MKs, which is crucial for the onset of thrombopoiesis. They provide new molecular cues that control initiation of platelet biogenesis and may help elucidate some unexplained thrombocytopenia.


Subject(s)
Megakaryocytes , Thrombopoiesis , Blood Platelets , Humans , Mitochondrial Dynamics , Reactive Oxygen Species
7.
Thromb Haemost ; 121(12): 1628-1636, 2021 12.
Article in English | MEDLINE | ID: mdl-33851387

ABSTRACT

BACKGROUND: Platelet cytosolic cyclic adenosine monophosphate (cAMP) levels are balanced by synthesis, degradation, and efflux. Efflux can occur via multidrug resistant protein-4 (MRP4; ABCC4) present on dense granule and/or plasma membranes. As lipid rafts have been shown to interfere on cAMP homeostasis, we evaluated the relationships between the distribution and activity of MRP4 in lipid rafts and cAMP efflux. METHODS: Platelet activation and cAMP homeostasis were analyzed in human and wild-type or MRP4-deleted mouse platelets in the presence of methyl-ß-cyclodextrin (MßCD) to disrupt lipid rafts, and of activators of the cAMP signalling pathways. Human platelet MRP4 and effector proteins of the cAMP pathway were analyzed by immunoblots in lipid rafts isolated by differential centrifugation. RESULTS: MßCD dose dependently inhibited human and mouse platelet aggregation without affecting per se cAMP levels. An additive inhibitory effect existed between the adenylate cyclase (AC) activator forskolin and MßCD that was accompanied by an overincrease of cAMP, and which was significantly enhanced upon MRP4 deletion. Finally, an efflux of cAMP out of resting platelets incubated with prostaglandin E1 (PGE1) was observed that was partly dependent on MRP4. Lipid rafts contained a small fraction (≈15%) of MRP4 and most of the inhibitory G-protein Gi, whereas Gs protein, AC3, and phosphodiesterases PDE2 and PDE3A were all present as only trace amounts. CONCLUSION: Our results are in favour of part of MRP4 present at the platelet surface, including in lipid rafts. Lipid raft integrity is necessary for cAMP signalling regulation, although MRP4 and most players of cAMP homeostasis are essentially located outside rafts.


Subject(s)
Blood Platelets/metabolism , Cyclic AMP/blood , Membrane Microdomains/metabolism , Multidrug Resistance-Associated Proteins/blood , Platelet Aggregation , Second Messenger Systems , Alprostadil/pharmacology , Animals , Blood Platelets/drug effects , Membrane Microdomains/drug effects , Membrane Microdomains/genetics , Mice, Knockout , Multidrug Resistance-Associated Proteins/genetics , Platelet Aggregation/drug effects , beta-Cyclodextrins/pharmacology
8.
J Clin Med ; 9(3)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32188130

ABSTRACT

Ticagrelor, an antiplatelet adenosine diphosphate (ADP)-P2Y12 receptor antagonist, increases the risk of bleeding. Its management is challenging because platelet transfusion is ineffective and no specific antidote is currently available. Epinephrine, a vasopressor catecholamine prescribed during shock, restores platelet functions inhibited by ticagrelor through stimulation of α2A-adrenoreceptors. It subsequently inhibits cyclic adenosine monophosphate (cAMP) pathway and PI3K signaling. However, since epinephrine may expose a patient to deleterious hemodynamic effects, we hypothesized that other α2-adrenoreceptor agonist drugs used in clinical practice with fewer side effects could reverse the antiplatelet effects of ticagrelor. We compared in vitro the efficacy of clonidine, dexmedetomidine, brimonidine, and norepinephrine with epinephrine to restore ADP- and PAR-1-AP-induced washed platelet aggregation inhibited by ticagrelor, as well as resulting platelet cAMP levels. In ticagrelor-free samples, none of the α2-adrenoreceptor agonists induced aggregation by itself but all of them potentiated ADP-induced aggregation. Compared with epinephrine, norepinephrine, and brimonidine partially restored ADP- and fully restored PAR-1-AP-induced aggregation inhibited by ticagrelor while clonidine and dexmedetomidine were ineffective. Indeed, this lack of effect resulted from a lower decrease in cAMP concentration elicited by these partial α2-adrenoreceptor agonists, clonidine, and dexmedetomidine, compared with full α2-agonists. Our results support the development of specific full and systemic α2-adrenoreceptor agonists for ticagrelor reversal.

9.
Eur J Pharmacol ; 866: 172798, 2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31738933

ABSTRACT

Ticagrelor, an antagonist of the platelet adenosine diphosphate (ADP)-P2Y12 receptor is recommended for patients with acute coronary syndromes. However, ticagrelor exposes to a risk of bleeding, the management of which is challenging because platelet transfusion is ineffective, and no antidote is yet available. We hypothesized that the vasopressor drug epinephrine could counter the antiplatelet effects of ticagrelor and restore platelet functions. We assessed in vitro the efficiency of epinephrine in restoring platelet aggregation inhibited by ticagrelor and investigated the underlying mechanisms. Washed platelet aggregation and secretion were measured upon stimulation by epinephrine alone or in combination with ADP, in the presence or absence of ticagrelor. Mechanistic investigations used P2Y1 and phosphoinositide 3-kinase (PI3K) inhibitors and included vasodilator-stimulated phosphoprotein (VASP) and Akt phosphorylation assays as well as measurement of Ca2+ mobilisation. We found that epinephrine restored ADP-induced platelet aggregation, but not dense granule release. Epinephrine alone failed to induce aggregation whereas it fully induced VASP dephosphorylation and Akt phosphorylation regardless of the presence of ticagrelor. In the presence of ticagrelor, blockage of the P2Y1 receptor prevented restoration of platelet aggregation by the combination of epinephrine and ADP, as well as intracellular Ca2+ mobilisation. In combination with ADP, epinephrine induced platelet aggregation of ticagrelor-treated platelets through inhibition of the cAMP pathway and activation of the PI3K pathway, thus enabling the P2Y1 receptor signalling and subsequent Ca2+ mobilisation. This proof-of-concept study needs to be challenged in vivo for the management of bleeding in ticagrelor-treated patients.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/physiology , Epinephrine/pharmacology , Ticagrelor/pharmacology , Blood Platelets/cytology , Cell Adhesion Molecules/metabolism , Humans , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Phosphorylation/drug effects , Platelet Aggregation/drug effects , Receptors, Purinergic P2Y1/metabolism , Signal Transduction/drug effects
10.
Thromb Res ; 183: 159-162, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31678711

ABSTRACT

INTRODUCTION: Clinical benefit-risk balance of direct oral anticoagulants (DOAC) in atherothrombosis prevention differs between anti-Xa and anti-IIa drugs and their specific effect on platelet functions remains controversial. We hence investigated rivaroxaban and dabigatran effect on platelets in identical experimental conditions. MATERIALS AND METHODS: Blood of fifteen healthy volunteers was spiked with DOAC which plasma concentrations were measured by specific anti-Xa or anti-IIa assays. Light transmission aggregometry measured in platelet-rich plasma used low doses of agonists: 0.5 mM arachidonic acid, 2.5 µM ADP, 0.5 µM epinephrine, 0.8 µg/ml collagen, 7.5 µM TRAP-6 and 0.5 pM tissue factor in the presence of H-Gly-Pro-Arg-Pro-OH to prevent fibrin polymerization. Platelet adhesion on collagen fibres was evaluated in whole blood under flow. Same experiments were reproduced in the presence of aspirin. RESULTS: Median [95% CI] plasma concentrations were of 28 [23-36], 128 [119-144] and 321 [293-361] ng/ml for rivaroxaban and 39 [34-45], 171 [166-193] and 353 [349-382] ng/ml for dabigatran. DOAC did not modify platelet aggregation or adhesion on collagen fibres at any tested concentrations. However, they delayed platelet aggregation secondary to coagulation activation with a more potent effect with dabigatran (p < 0.001). Aspirin did not modify DOAC effect. CONCLUSION: Efficacy of combining DOAC and aspirin in atherothrombosis prevention would not stem from a direct antiplatelet effect of the formers but to their additive inhibitory effect on platelet aggregation secondary to coagulation activation. This effect differs according to DOAC molecules and may also result from the pleiotropic roles of the different coagulation factors targeted by DOAC.


Subject(s)
Antithrombins/adverse effects , Dabigatran/adverse effects , Factor Xa Inhibitors/adverse effects , Rivaroxaban/adverse effects , Antithrombins/pharmacology , Antithrombins/therapeutic use , Dabigatran/pharmacokinetics , Dabigatran/therapeutic use , Factor Xa Inhibitors/pharmacology , Factor Xa Inhibitors/therapeutic use , Female , Healthy Volunteers , Humans , Male , Platelet Function Tests , Rivaroxaban/pharmacology , Rivaroxaban/therapeutic use
11.
Stem Cell Rev Rep ; 15(4): 590-600, 2019 08.
Article in English | MEDLINE | ID: mdl-30879244

ABSTRACT

Stem cells at the origin of endothelial progenitor cells and in particular endothelial colony forming cells (ECFCs) subtype have been largely supposed to be positive for the CD133 antigen, even though no clear correlation has been established between its expression and function in ECFCs. We postulated that CD133 in ECFCs might be expressed intracellularly, and could participate to vasculogenic properties. ECFCs extracted from cord blood were used either fresh (n = 4) or frozen (n = 4), at culture days <30, to investigate the intracellular presence of CD133 by flow cytometry and confocal analysis. Comparison with HUVEC and HAEC mature endothelial cells was carried out. Then, CD133 was silenced in ECFCs using specific siRNA (siCD133-ECFCs) or scramble siRNA (siCtrl-ECFCs). siCD133-ECFCs (n = 12), siCtrl-ECFCs (n = 12) or PBS (n = 12) were injected in a hind-limb ischemia nude mouse model and vascularization was quantified at day 14 with H&E staining and immunohistochemistry for CD31. Results of flow cytometry and confocal microscopy evidenced the positivity of CD133 in ECFCs after permeabilization compared with not permeabilized ECFCs (p < 0.001) and mature endothelial cells (p < 0.03). In the model of mouse hind-limb ischemia, silencing of CD133 in ECFCs significantly abolished post-ischemic revascularization induced by siCtrl-ECFCs; indeed, a significant reduction in cutaneous blood flows (p = 0.03), capillary density (CD31) (p = 0.01) and myofiber regeneration (p = 0.04) was observed. Also, a significant necrosis (p = 0.02) was observed in mice receiving siCD133-ECFCs compared to those treated with siCtrl-ECFCs. In conclusion, our work describes for the first time the intracellular expression of the stemness marker CD133 in ECFCs. This feature could resume the discrepancies found in the literature concerning CD133 positivity and ontogeny in endothelial progenitors.


Subject(s)
AC133 Antigen/biosynthesis , Antigens, Differentiation/biosynthesis , Endothelial Progenitor Cells/metabolism , Gene Expression Regulation , Neovascularization, Physiologic , Animals , Endothelial Progenitor Cells/cytology , Heterografts , Hindlimb/blood supply , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Ischemia/metabolism , Ischemia/pathology , Ischemia/therapy , Male , Mice , Mice, Nude , Stem Cell Transplantation
12.
Blood Adv ; 3(11): 1702-1713, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31171507

ABSTRACT

The bioactive lipid mediator sphingosine 1-phosphate (S1P) was recently assigned critical roles in platelet biology: whereas S1P1 receptor-mediated S1P gradient sensing was reported to be essential for directing proplatelet extensions from megakaryocytes (MKs) toward bone marrow sinusoids, MK sphingosine kinase 2 (Sphk2)-derived S1P was reported to further promote platelet shedding through receptor-independent intracellular actions, and platelet aggregation through S1P1 Yet clinical use of S1P pathway modulators including fingolimod has not been associated with risk of bleeding or thrombosis. We therefore revisited the role of S1P in platelet biology in mice. Surprisingly, no reduction in platelet counts was observed when the vascular S1P gradient was ablated by impairing S1P provision to plasma or S1P degradation in interstitial fluids, nor when gradient sensing was impaired by S1pr1 deletion selectively in MKs. Moreover, S1P1 expression and signaling were both undetectable in mature MKs in situ, and MK S1pr1 deletion did not affect platelet aggregation or spreading. When S1pr1 deletion was induced in hematopoietic progenitor cells, platelet counts were instead significantly elevated. Isolated global Sphk2 deficiency was associated with thrombocytopenia, but this was not replicated by MK-restricted Sphk2 deletion and was reversed by compound deletion of either Sphk1 or S1pr2, suggesting that this phenotype arises from increased S1P export and S1P2 activation secondary to redistribution of sphingosine to Sphk1. Consistent with clinical observations, we thus observe no essential role for S1P1 in facilitating platelet production or activation. Instead, S1P restricts megakaryopoiesis through S1P1, and can further suppress thrombopoiesis through S1P2 when aberrantly secreted in the hematopoietic niche.


Subject(s)
Blood Platelets/metabolism , Lysophospholipids/metabolism , Megakaryocytes/metabolism , Signal Transduction , Sphingosine/analogs & derivatives , Stem Cell Niche , Thrombopoiesis , Animals , Blood Platelets/cytology , Lysophospholipids/genetics , Megakaryocytes/cytology , Mice , Mice, Knockout , Sphingosine/genetics , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism
13.
Sci Rep ; 6: 21700, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26898346

ABSTRACT

We present a new, rapid method for producing blood platelets in vitro from cultured megakaryocytes based on a microfluidic device. This device consists in a wide array of VWF-coated micropillars. Such pillars act as anchors on megakaryocytes, allowing them to remain trapped in the device and subjected to hydrodynamic shear. The combined effect of anchoring and shear induces the elongation of megakaryocytes and finally their rupture into platelets and proplatelets. This process was observed with megakaryocytes from different origins and found to be robust. This original bioreactor design allows to process megakaryocytes at high throughput (millions per hour). Since platelets are produced in such a large amount, their extensive biological characterisation is possible and shows that platelets produced in this bioreactor are functional.


Subject(s)
Blood Platelets/cytology , Fetal Blood/cytology , Lab-On-A-Chip Devices , Megakaryocytes/cytology , Models, Biological , Antigens, CD/physiology , Biomarkers/metabolism , Biomechanical Phenomena , Biomimetics , Bioreactors , Blood Platelets/physiology , Bone Marrow Cells/cytology , Bone Marrow Cells/physiology , Fetal Blood/physiology , Gene Expression , Humans , Megakaryocytes/physiology , Platelet Activation/physiology , Platelet Aggregation/physiology , Platelet Count , Rheology , Stress, Mechanical
14.
JCI Insight ; 1(16): e88643, 2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27734030

ABSTRACT

von Willebrand disease type 2B (VWD-type 2B) is characterized by gain-of-function mutations of von Willebrand factor (vWF) that enhance its binding to platelet glycoprotein Ibα and alter the protein's multimeric structure. Patients with VWD-type 2B display variable extents of bleeding associated with macrothrombocytopenia and sometimes with thrombopathy. Here, we addressed the molecular mechanism underlying the severe macrothrombocytopenia both in a knockin murine model for VWD-type 2B by introducing the p.V1316M mutation in the murine Vwf gene and in a patient bearing this mutation. We provide evidence of a profound defect in megakaryocyte (MK) function since: (a) the extent of proplatelet formation was drastically decreased in 2B MKs, with thick proplatelet extensions and large swellings; and (b) 2B MKs presented actin disorganization that was controlled by upregulation of the RhoA/LIM kinase (LIMK)/cofilin pathway. In vitro and in vivo inhibition of the LIMK/cofilin signaling pathway rescued actin turnover and restored normal proplatelet formation, platelet count, and platelet size. These data indicate, to our knowledge for the first time, that the severe macrothrombocytopenia in VWD-type 2B p.V1316M is due to an MK dysfunction that originates from a constitutive activation of the RhoA/LIMK/cofilin pathway and actin disorganization. This suggests a potentially new function of vWF during platelet formation that involves regulation of actin dynamics.


Subject(s)
Actin Depolymerizing Factors/genetics , Lim Kinases/genetics , Thrombocytopenia/physiopathology , von Willebrand Disease, Type 2/physiopathology , von Willebrand Factor/genetics , Animals , Gene Knock-In Techniques , Humans , Male , Mice , Mutation , Signal Transduction , rho GTP-Binding Proteins , rhoA GTP-Binding Protein , von Willebrand Disease, Type 2/enzymology
15.
PLoS One ; 10(8): e0136652, 2015.
Article in English | MEDLINE | ID: mdl-26313154

ABSTRACT

Hematopoietic stem cells (HSC) differentiate into megakaryocytes (MK), whose function is to release platelets. Attempts to improve in vitro platelet production have been hampered by the low amplification of MK. Providing HSC with an optimal three-dimensional (3D) architecture may favor MK differentiation by mimicking some crucial functions of the bone marrow structure. To this aim, porous hydrogel scaffolds were used to study MK differentiation from HSC as well as platelet production. Flow cytometry, qPCR and perfusion studies showed that 3D was suitable for longer kinetics of CD34+ cell proliferation and for delayed megakaryocytic differentiation far beyond the limited shelf-life observed in liquid culture but also increased production of functional platelets. We provide evidence that these 3D effects were related to 1) persistence of MK progenitors and precursors and 2) prolongation of expression of EKLF and c-myb transcription factors involved in early MK differentiation. In addition, presence of abundant mature MK with increased ploidy and impressive cytoskeleton elongations was in line with expression of NF-E2 transcription factor involved in late MK differentiation. Platelets produced in flow conditions were functional as shown by integrin αIIbß3 activation following addition of exogenous agonists. This study demonstrates that spatial organization and biological cues synergize to improve MK differentiation and platelet production. Thus, 3D environment constitutes a powerful tool for unraveling the physiological mechanisms of megakaryopoiesis and thrombopoiesis in the bone marrow environment, potentially leading to an improved amplification of MK and platelet production.


Subject(s)
Blood Platelets/metabolism , Cell Differentiation , Hematopoietic Stem Cells/metabolism , Megakaryocytes/metabolism , Thrombopoiesis , Tissue Scaffolds/chemistry , Antigens, CD34/metabolism , Blood Platelets/cytology , Cells, Cultured , Female , Gene Expression Regulation , Hematopoietic Stem Cells/cytology , Humans , Hydrogels/chemistry , Integrin alpha2/biosynthesis , Integrin beta3/biosynthesis , Kruppel-Like Transcription Factors/biosynthesis , Male , Megakaryocytes/cytology , NF-E2 Transcription Factor, p45 Subunit/biosynthesis , Proto-Oncogene Proteins c-myb/biosynthesis
16.
Stem Cell Res ; 13(3 Pt A): 431-41, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25460604

ABSTRACT

Understanding the role of Notch and its ligands within the different bone marrow niches could shed light on the mechanisms regulating haematopoietic progenitor cells (HPCs) maintenance and self-renewal. Here, we report that murine bone marrow HPCs activation by the vascular Notch Delta-4 ligand maintains a significant proportion of cells specifically in the G0 state. Furthermore, Delta-4/Notch pathway limits significantly the loss of the in vivo short-term reconstitutive potential upon transplantation of Delta-4 activated HPCs into lethally irradiated recipient mice. Both effects are directly correlated with the decrease of cell cycle genes transcription such as CYCLIN-D1, -D2, and -D3, and the upregulation of stemness related genes transcription such as BMI1, GATA2, HOXB4 and C-MYC. In addition, the transcriptional screening also highlights new downstream post-transcriptional factors, named PUMILIO1 and -2, as part of the stem signature associated with the Delta-4/Notch signalling pathway.


Subject(s)
Hematopoietic Stem Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Receptors, Notch/metabolism , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cells, Cultured , Cyclin D/genetics , Cyclin D/metabolism , Down-Regulation , Gene Regulatory Networks , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Interphase , Ligands , Mice , Mice, Inbred C57BL , Signal Transduction , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Up-Regulation
17.
PLoS One ; 8(5): e63810, 2013.
Article in English | MEDLINE | ID: mdl-23737952

ABSTRACT

It is established that proplatelets are formed from mature megakaryocytes (MK) as intermediates before platelet production. Recently, the presence of proplatelets was described in blood incubated in static conditions. We have previously demonstrated that platelet and proplatelet formation is upregulated by MK exposure to high shear rates (1800 s(-1)) on immobilized von Willebrand factor (VWF). The purpose of the present study was to investigate whether VWF is involved in the regulation of terminal platelet production in blood. To this end, Vwf (-/-) mice, a model of severe von Willebrand disease, were used to create a situation in which blood cells circulate in a vascular tree that is completely devoid of VWF. Murine platelets were isolated from Vwf (-/-) and Vwf (+/+) blood, exposed to VWF at 1800 s(-1) in a microfluidic platform, and examined by means of videomicroscopy, as well as fluorescence and activation studies. Proplatelets became visible within 5 minutes, representing 38% of all platelets after 12 minutes and 46% after 28 min. The proportion of proplatelets was 1.8-fold higher in blood from Vwf(-/-) mice than from Vwf(+/+) mice, suggesting a role of VWF in vivo. Fragmentation of these proplatelets into smaller discoid platelets was also observed in real-time. Platelets remained fully activatable by thrombin. Compensation of plasmatic VWF following hydrodynamic gene transfer in Vwf(-/-) mice reduced the percentage of proplatelets to wild-type levels. A thrombocytopenic mouse model was studied in the flow system, 7 days after a single 5-FU injection. Compared to untreated mouse blood, a 2-fold increase in the percentage of proplatelets was detected following exposure to 1800 s(-1) on VWF of samples from mice treated with 5-FU. In conclusion, VWF and shear stress together appear to upregulate proplatelet reorganization and platelet formation. This suggests a new function for VWF in vivo as regulator of bloodstream thrombopoiesis.


Subject(s)
Blood Platelets/physiology , Thrombopoiesis , von Willebrand Factor/metabolism , Animals , Blood Platelets/cytology , Blood Platelets/metabolism , Blood Platelets/pathology , Cytoskeleton/metabolism , Humans , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice , Microtubules/metabolism , Perfusion , Platelet Adhesiveness , Stress, Mechanical , Thrombin/metabolism , Thrombocytopenia/blood , Thrombocytopenia/chemically induced , von Willebrand Disease, Type 3/blood , von Willebrand Disease, Type 3/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL