Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Microbiol Mol Biol Rev ; 87(3): e0019822, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37358444

ABSTRACT

Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.


Subject(s)
Appetite , Bacteria , Mice , Animals , Humans , Virulence , Bacteria/metabolism , Salmonella typhimurium , Virulence Factors/metabolism , Carbon/metabolism , Bacterial Proteins/metabolism
2.
Science ; 379(6637): 1149-1156, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36927025

ABSTRACT

Therapeutic manipulation of the gut microbiota holds great potential for human health. The mechanisms bacteria use to colonize the gut therefore present valuable targets for clinical intervention. We now report that bacteria use phase separation to enhance fitness in the mammalian gut. We establish that the intrinsically disordered region (IDR) of the broadly and highly conserved transcription termination factor Rho is necessary and sufficient for phase separation in vivo and in vitro in the human commensal Bacteroides thetaiotaomicron. Phase separation increases transcription termination by Rho in an IDR-dependent manner. Moreover, the IDR is critical for gene regulation in the gut. Our findings expose phase separation as vital for host-commensal bacteria interactions and relevant for novel clinical applications.


Subject(s)
Bacterial Proteins , Bacteroides thetaiotaomicron , Gastrointestinal Microbiome , Genetic Fitness , Intrinsically Disordered Proteins , RNA Helicases , Rho Factor , Animals , Humans , Bacteroides thetaiotaomicron/genetics , Bacteroides thetaiotaomicron/physiology , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/physiology , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/physiology , Rho Factor/chemistry , Rho Factor/genetics , Rho Factor/physiology , Transcription Termination, Genetic , Protein Domains , Mice , Germ-Free Life , Mice, Inbred C57BL , Male , Female
3.
Microbiome ; 11(1): 47, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894983

ABSTRACT

BACKGROUND: IL-22 is induced by aryl hydrocarbon receptor (AhR) signaling and plays a critical role in gastrointestinal barrier function through effects on antimicrobial protein production, mucus secretion, and epithelial cell differentiation and proliferation, giving it the potential to modulate the microbiome through these direct and indirect effects. Furthermore, the microbiome can in turn influence IL-22 production through the synthesis of L-tryptophan (L-Trp)-derived AhR ligands, creating the prospect of a host-microbiome feedback loop. We evaluated the impact IL-22 may have on the gut microbiome and its ability to activate host AhR signaling by observing changes in gut microbiome composition, function, and AhR ligand production following exogenous IL-22 treatment in both mice and humans. RESULTS: Microbiome alterations were observed across the gastrointestinal tract of IL-22-treated mice, accompanied by an increased microbial functional capacity for L-Trp metabolism. Bacterially derived indole derivatives were increased in stool from IL-22-treated mice and correlated with increased fecal AhR activity. In humans, reduced fecal concentrations of indole derivatives in ulcerative colitis (UC) patients compared to healthy volunteers were accompanied by a trend towards reduced fecal AhR activity. Following exogenous IL-22 treatment in UC patients, both fecal AhR activity and concentrations of indole derivatives increased over time compared to placebo-treated UC patients. CONCLUSIONS: Overall, our findings indicate IL-22 shapes gut microbiome composition and function, which leads to increased AhR signaling and suggests exogenous IL-22 modulation of the microbiome may have functional significance in a disease setting. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Mice , Receptors, Aryl Hydrocarbon/metabolism , Interleukins , Indoles , Interleukin-22
4.
mBio ; 13(6): e0271922, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36377897

ABSTRACT

Persistence, a viable but non-replicating growth state, has been implicated in diseases caused by Chlamydia trachomatis. Starvation of distinct nutrients produces a superficially similar persistent state, implying convergence on a common intracellular environment. We employed host-pathogen dual RNA-sequencing under both iron- and tryptophan-starved conditions to systematically characterize the persistent chlamydial transcriptome and to define common contributions of the host cell transcriptional stress response in shaping the intracellular environment. The transcriptome of the infected host cells was highly specific to each nutritional stress, despite comparable effects on chlamydial growth and development in each condition. In contrast, the chlamydial transcriptomes between nutritional conditions were highly similar, suggesting some overlap in host cell responses to iron limitation and tryptophan starvation that contribute to a common persistent phenotype. We demonstrate that a commonality in the host cell responses is the suppression of GTP biosynthesis, a nucleotide for which Chlamydia are auxotrophic. Pharmacological inhibition of host IMP dehydrogenase (IMPDH1), which catalyzes the rate-limiting step in de novo guanine nucleotide synthesis, resulted in comparable GTP depletion to both iron and tryptophan starvation and induced chlamydial persistence. Moreover, IMPDH1 inhibition and iron starvation acted synergistically to control chlamydial growth. Thus, host cell reduction in GTP levels amplifies the nutritional stress to intracellular chlamydiae in infection-relevant models of persistence, illustrating the determinative role the infected host cell plays in bacterial stress responses. IMPORTANCE Bacteria respond to nutritional stress through universal and unique mechanisms. Genome reduction in the Chlamydiaceae, a consequence of coevolution with their obligate eukaryotic hosts, has reduced their repertoire of stress response mechanisms. Here, we demonstrate that the infected host cell may provide the context within which universal stress responses emerge for Chlamydia trachomatis. We report that during starvation of the essential nutrients iron or tryptophan, a common response of the infected epithelial cell is the suppression of GTP biosynthesis, which induces a persistent developmental state in the pathogen. Thus, chlamydial persistence results from the combined effects of primary stresses on the pathogen and the host, with the latter eliciting a secondary host cell response that intensifies the inhospitable intracellular environment.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Humans , Chlamydia trachomatis/genetics , Tryptophan , Chlamydia Infections/microbiology , Iron/pharmacology , Guanosine Triphosphate
5.
Nat Commun ; 11(1): 6430, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33353937

ABSTRACT

The trp operon of Chlamydia trachomatis is organized differently from other model bacteria. It contains trpR, an intergenic region (IGR), and the biosynthetic trpB and trpA open-reading frames. TrpR is a tryptophan-dependent repressor that regulates the major promoter (PtrpR), while the IGR harbors an alternative promoter (PtrpBA) and an operator sequence for the iron-dependent repressor YtgR to regulate trpBA expression. Here, we report that YtgR repression at PtrpBA is also dependent on tryptophan by regulating YtgR levels through a rare triple-tryptophan motif (WWW) in the YtgCR precursor. Inhibiting translation during tryptophan limitation at the WWW motif subsequently promotes Rho-independent transcription termination of ytgR, thereby de-repressing PtrpBA. Thus, YtgR represents an alternative strategy to attenuate trpBA expression, expanding the repertoire for trp operon attenuation beyond TrpL- and TRAP-mediated mechanisms described in other bacteria. Furthermore, repurposing the iron-dependent repressor YtgR underscores the fundamental importance of maintaining tryptophan-dependent attenuation of the trpRBA operon.


Subject(s)
Bacterial Proteins/metabolism , Chlamydia trachomatis/genetics , Iron/metabolism , Operon/genetics , Tryptophan/metabolism , Amino Acid Motifs , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Chlamydia trachomatis/drug effects , Gene Expression Regulation, Bacterial/drug effects , HeLa Cells , Humans , Indoles/pharmacology , Models, Biological , Promoter Regions, Genetic , Protein Biosynthesis/drug effects , Protein Domains , RNA, Transfer, Trp/metabolism , Transcription, Genetic/drug effects , rho GTP-Binding Proteins/metabolism
6.
Elife ; 82019 04 02.
Article in English | MEDLINE | ID: mdl-30938288

ABSTRACT

During infection, pathogens are starved of essential nutrients such as iron and tryptophan by host immune effectors. Without conserved global stress response regulators, how the obligate intracellular bacterium Chlamydia trachomatis arrives at a physiologically similar 'persistent' state in response to starvation of either nutrient remains unclear. Here, we report on the iron-dependent regulation of the trpRBA tryptophan salvage pathway in C. trachomatis. Iron starvation specifically induces trpBA expression from a novel promoter element within an intergenic region flanked by trpR and trpB. YtgR, the only known iron-dependent regulator in Chlamydia, can bind to the trpRBA intergenic region upstream of the alternative trpBA promoter to repress transcription. Simultaneously, YtgR binding promotes the termination of transcripts from the primary promoter upstream of trpR. This is the first description of an iron-dependent mechanism regulating prokaryotic tryptophan biosynthesis that may indicate the existence of novel approaches to gene regulation and stress response in Chlamydia.


Subject(s)
Chlamydia trachomatis/genetics , Chlamydia trachomatis/metabolism , Gene Expression Regulation, Bacterial , Iron/metabolism , Metabolic Networks and Pathways/genetics , Operon , Tryptophan/metabolism , Bacterial Proteins/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism , Transcription, Genetic
7.
Article in English | MEDLINE | ID: mdl-28951853

ABSTRACT

The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.


Subject(s)
Chlamydia trachomatis/genetics , Chlamydia trachomatis/metabolism , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions/physiology , Iron/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chlamydia Infections , Homeostasis , Humans , Mammals/metabolism , Phenotype , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL