Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Am J Hum Genet ; 98(5): 1001-1010, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27108799

ABSTRACT

Whole-exome sequencing of 13 individuals with developmental delay commonly accompanied by abnormal muscle tone and seizures identified de novo missense mutations enriched within a sub-region of GNB1, a gene encoding the guanine nucleotide-binding protein subunit beta-1, Gß. These 13 individuals were identified among a base of 5,855 individuals recruited for various undiagnosed genetic disorders. The probability of observing 13 or more de novo mutations by chance among 5,855 individuals is very low (p = 7.1 × 10(-21)), implicating GNB1 as a genome-wide-significant disease-associated gene. The majority of these 13 mutations affect known Gß binding sites, which suggests that a likely disease mechanism is through the disruption of the protein interface required for Gα-Gßγ interaction (resulting in a constitutively active Gßγ) or through the disruption of residues relevant for interaction between Gßγ and certain downstream effectors (resulting in reduced interaction with the effectors). Strikingly, 8 of the 13 individuals recruited here for a neurodevelopmental disorder have a germline de novo GNB1 mutation that overlaps a set of five recurrent somatic tumor mutations for which recent functional studies demonstrated a gain-of-function effect due to constitutive activation of G protein downstream signaling cascades for some of the affected residues.


Subject(s)
Developmental Disabilities/etiology , GTP-Binding Protein beta Subunits/genetics , Germ-Line Mutation/genetics , Intellectual Disability/etiology , Muscle Hypotonia/etiology , Seizures/etiology , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/pathology , Exome/genetics , Female , GTP-Binding Protein beta Subunits/chemistry , Humans , Infant , Intellectual Disability/pathology , Male , Muscle Hypotonia/pathology , Phenotype , Protein Conformation , Seizures/pathology , Signal Transduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL