Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Proc Natl Acad Sci U S A ; 113(13): 3557-62, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26979952

ABSTRACT

Many experiments have shown that local biodiversity loss impairs the ability of ecosystems to maintain multiple ecosystem functions at high levels (multifunctionality). In contrast, the role of biodiversity in driving ecosystem multifunctionality at landscape scales remains unresolved. We used a comprehensive pan-European dataset, including 16 ecosystem functions measured in 209 forest plots across six European countries, and performed simulations to investigate how local plot-scale richness of tree species (α-diversity) and their turnover between plots (ß-diversity) are related to landscape-scale multifunctionality. After accounting for variation in environmental conditions, we found that relationships between α-diversity and landscape-scale multifunctionality varied from positive to negative depending on the multifunctionality metric used. In contrast, when significant, relationships between ß-diversity and landscape-scale multifunctionality were always positive, because a high spatial turnover in species composition was closely related to a high spatial turnover in functions that were supported at high levels. Our findings have major implications for forest management and indicate that biotic homogenization can have previously unrecognized and negative consequences for large-scale ecosystem multifunctionality.


Subject(s)
Biodiversity , Forests , Computer Simulation , Databases, Factual , Ecosystem , Europe , Forestry , Models, Biological , Trees
2.
Ecol Lett ; 20(11): 1414-1426, 2017 11.
Article in English | MEDLINE | ID: mdl-28925074

ABSTRACT

The importance of biodiversity in supporting ecosystem functioning is generally well accepted. However, most evidence comes from small-scale studies, and scaling-up patterns of biodiversity-ecosystem functioning (B-EF) remains challenging, in part because the importance of environmental factors in shaping B-EF relations is poorly understood. Using a forest research platform in which 26 ecosystem functions were measured along gradients of tree species richness in six regions across Europe, we investigated the extent and the potential drivers of context dependency of B-EF relations. Despite considerable variation in species richness effects across the continent, we found a tendency for stronger B-EF relations in drier climates as well as in areas with longer growing seasons and more functionally diverse tree species. The importance of water availability in driving context dependency suggests that as water limitation increases under climate change, biodiversity may become even more important to support high levels of functioning in European forests.


Subject(s)
Biodiversity , Ecosystem , Forests , Climate Change , Europe
3.
New Phytol ; 214(3): 1281-1293, 2017 May.
Article in English | MEDLINE | ID: mdl-28181238

ABSTRACT

Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions.


Subject(s)
Forests , Trees/physiology , Biodiversity , Europe , Linear Models , Plant Leaves/physiology , Species Specificity , Wood/physiology
4.
Photosynth Res ; 132(1): 13-66, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27815801

ABSTRACT

Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121-158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.


Subject(s)
Chlorophyll/chemistry , Chlorophyll/metabolism , Fluorescence , Biosensing Techniques , Chlorophyll A , Crops, Agricultural , Cytochrome b6f Complex/metabolism , Cytochromes b6/metabolism , Electron Transport , Herbicides/toxicity , Light , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Stress, Physiological , Temperature , Trees
5.
Proc Natl Acad Sci U S A ; 111(41): 14812-5, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267642

ABSTRACT

Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.


Subject(s)
Biodiversity , Droughts , Forests , Trees/physiology , Carbon Isotopes , Species Specificity , Stress, Physiological
6.
New Phytol ; 212(1): 51-65, 2016 10.
Article in English | MEDLINE | ID: mdl-27265248

ABSTRACT

The variability of chlorophyll a fluorescence (ChlF) parameters of forest tree species was investigated in 209 stands belonging to six European forests, from Mediterranean to boreal regions. The modifying role of environmental factors, forest structure and tree diversity (species richness and composition) on ChlF signature was analysed. At the European level, conifers showed higher potential performance than broadleaf species. Forests in central Europe performed better than those in Mediterranean and boreal regions. At the site level, homogeneous clusters of tree species were identified by means of a principal component analysis (PCA) of ChlF parameters. The discrimination of the clusters of species was influenced by their taxonomic position and ecological characteristics. The species richness influenced the tree ChlF properties in different ways depending on tree species and site. Tree species and site also affected the relationships between ChlF parameters and other plant functional traits (specific leaf area, leaf nitrogen content, light-saturated photosynthesis, wood density, leaf carbon isotope composition). The assessment of the photosynthetic properties of tree species, by means of ChlF parameters, in relation to their functional traits, is a relevant issue for studies in forest ecology. The connections of data from field surveys with remotely assessed parameters must be carefully explored.


Subject(s)
Chlorophyll/metabolism , Ecological and Environmental Phenomena , Forests , Trees/classification , Absorption, Radiation , Chlorophyll A , Cluster Analysis , Europe , Fluorescence , Principal Component Analysis , Quantitative Trait, Heritable , Species Specificity
7.
Photosynth Res ; 122(2): 121-58, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25119687

ABSTRACT

The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists.


Subject(s)
Chlorophyll/chemistry , Fluorescence , Photosynthesis/physiology , Chlorophyll/metabolism , Chlorophyll A , Light
8.
Bioorg Med Chem Lett ; 23(14): 4239-43, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23735744

ABSTRACT

A series of amides bearing a variety of amidine head groups was investigated as BACE1 inhibitors with respect to inhibitory activity in a BACE1 enzyme as well as a cell-based assay. Determination of their basicity as well as their properties as substrates of P-glycoprotein revealed that a 2-amino-1,3-oxazine head group would be a suitable starting point for further development of brain penetrating compounds for potential Alzheimer's disease treatment.


Subject(s)
Amides/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Protease Inhibitors/chemistry , Alzheimer Disease/drug therapy , Amides/metabolism , Amides/therapeutic use , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Binding Sites , Humans , Molecular Docking Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/therapeutic use , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship
9.
Sci Total Environ ; 904: 166809, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37690750

ABSTRACT

Quercus ilex L. dieback has been reported in several Mediterranean forests, revealing different degree of crown damages even in close sites, as observed in two Q. ilex forest stands in southern Tuscany (IT). In this work, we applied a novel approach combining dendrochronological, tree-ring δ13C and genetic analysis to test the hypothesis that different damage levels observed in a declining (D) and non-declining (ND) Q. ilex stands are connected to population features linked to distinct response to drought. Furthermore, we investigated the impact of two major drought events (2012 and 2017), that occurred in the last fifteen years in central Italy, on Q. ilex growth and intrinsic water use efficiency (WUEi). Overall, Q. ilex showed slightly different ring-width patterns between the two stands, suggesting a lower responsiveness to seasonal climatic variations for trees at D stand, while Q. ilex at ND stand showed changes in the relationship between climatic parameters and growth across time. The strong divergence in δ13C signals between the two stands suggested a more conservative use of water for Q. ilex at ND compared to D stand that may be genetically driven. Q. ilex at ND resulted more resilient to drought compared to trees at D, probably thanks to its safer water strategy. Genotyping analysis based on simple-sequence repeat (SSR) markers revealed the presence of different Q. ilex populations at D and ND stands. Our study shows intraspecific variations in drought response among trees grown in close. In addition, it highlights the potential of combining tree-ring δ13C data with SSR genotyping for the selection of seed-bearing genotypes aimed to preserve Mediterranean holm oak ecosystem and improve its forest management.


Subject(s)
Quercus , Quercus/physiology , Ecosystem , Genotype , Forests , Trees , Water , Droughts
11.
Front Plant Sci ; 13: 1048582, 2022.
Article in English | MEDLINE | ID: mdl-36589121

ABSTRACT

Chlorophyll a fluorescence (ChF) signal analysis has become a widely used and rapid, non-invasive technique to study the photosynthetic process under stress conditions. It monitors plant responses to various environmental factors affecting plants under experimental and field conditions. Thus, it enables extensive research in ecology and benefits forestry, agriculture, horticulture, and arboriculture. Woody plants, especially trees, as organisms with a considerable life span, have a different life strategy than herbaceous plants and show more complex responses to stress. The range of changes in photosynthetic efficiency of trees depends on their age, ontogeny, species-specific characteristics, and acclimation ability. This review compiles the results of the most commonly used ChF techniques at the foliar scale. We describe the results of experimental studies to identify stress factors that affect photosynthetic efficiency and analyse the experience of assessing tree vigour in natural and human-modified environments. We discuss both the circumstances under which ChF can be successfully used to assess woody plant health and the ChF parameters that can be useful in field research. Finally, we summarise the advantages and limitations of the ChF method in research on trees, shrubs, and woody vines.

12.
Sci Total Environ ; 812: 152560, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34952080

ABSTRACT

Tree species diversity promotes multiple ecosystem functions and services. However, little is known about how above- and belowground resource availability (light, nutrients, and water) and resource uptake capacity mediate tree species diversity effects on aboveground wood productivity and temporal stability of productivity in European forests and whether the effects differ between humid and arid regions. We used the data from six major European forest types along a latitudinal gradient to address those two questions. We found that neither leaf area index (a proxy for light uptake capacity), nor fine root biomass (a proxy for soil nutrient and water uptake capacity) was related to tree species richness. Leaf area index did, however, enhance productivity, but negatively affected stability. Productivity was further promoted by soil nutrient availability, while stability was enhanced by fine root biomass. We only found a positive effect of tree species richness on productivity in arid regions and a positive effect on stability in humid regions. This indicates a possible disconnection between productivity and stability regarding tree species richness effects. In other words, the mechanisms that drive the positive effects of tree species richness on productivity do not per se benefit stability simultaneously. Our findings therefore suggest that tree species richness effects are largely mediated by differences in climatic conditions rather than by differences in above- and belowground resource availability and uptake capacity at the regional scales.


Subject(s)
Ecosystem , Trees , Biodiversity , Biomass , Forests , Soil
13.
Tree Physiol ; 40(11): 1561-1571, 2020 10 29.
Article in English | MEDLINE | ID: mdl-32597979

ABSTRACT

A chlorophyll fluorescence (ChlF) assessment was carried out on oak seedlings (Quercus ilex L., Quercus pubescens Willd., Quercus frainetto Ten.) of Italian and Greek provenance, during the years 2017 and 2018, in a common garden in central Italy planted in 2017. This trial aimed to test the relative performances of the oak species in the perspective of assisted migration as part of the actions for the adaptation of forests to climate change. The assessment of the photosynthetic performance of the tree species included the analysis of the prompt chlorophyll fluorescence (PF) transient and the modulated reflection (MR) at 820 nm, leaf chlorophyll content, leaf gas exchange (net photosynthesis, stomatal conductance), plant growth (i.e., height) and mortality rate after 2 years from the beginning of the experiment. The assessment of the performance of the three oak species was carried out 'in vivo'. Plants were generated from seeds and exposed to several environmental factors, including changing seasonal temperature, water availability, and soil biological and physical functionality. The results of PF indicate a stable functionality of the photosynthetic system PSII (expressed as FV/FM) across species and provenances and a decline in photochemistry functionality at the I-P phase (ΔVIP) in Q. frainetto, thus indicating a decline of the content of PSI in this species. This result was confirmed by the findings of MR analysis, with the speed of reduction and subsequent oxidation of PSI (VRED and VOX) strongly correlated to the amplitude of ΔVIP. The photosynthetic rates (net photosynthesis, PN) and growth were correlated with the parameters associated with PSI content and function, rather than those related to PSII. The low performance of Q. frainetto in the common garden seems to be related to early foliar senescence with the depletion of nitrogen, due to suboptimal climatic and edaphic conditions. Chlorophyll fluorescence allowed discrimination of populations of oak species and individuation of the less (or/and best) suitable species for future forest ecology and management purposes.


Subject(s)
Quercus , Trees , Climate Change , Forests , Italy , Photosynthesis , Plant Leaves
14.
Bioorg Med Chem ; 17(14): 5247-58, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19515567

ABSTRACT

Alpha 7 nicotinic acetylcholine receptor (alpha(7) nAChR) agonists are promising therapeutic candidates for the treatment of cognitive impairment associated with a variety of disorders including Alzheimer's disease and schizophrenia. Alpha 7 nAChRs are expressed in brain regions associated with cognitive function, regulate cholinergic neurotransmission and have been shown to be down regulated in both schizophrenia and Alzheimer's disease. Herein we report a novel, potent small molecule agonist of the alpha 7 nAChR, SEN12333/WAY-317538. This compound is a selective agonist of the alpha(7) nAChR with excellent in vitro and in vivo profiles, excellent brain penetration and oral bioavailability, and demonstrates in vivo efficacy in multiple behavioural cognition models. The SAR and biological evaluation of this series of compounds are discussed.


Subject(s)
Morpholines/chemistry , Morpholines/pharmacology , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , Alzheimer Disease/drug therapy , Animals , Binding, Competitive , Calcium/metabolism , Cell Line , Cognition/drug effects , Electrophysiology , Humans , Morpholines/pharmacokinetics , Nicotinic Agonists/pharmacokinetics , Pyridines/pharmacokinetics , Rats , Rats, Wistar , Schizophrenia/drug therapy , Structure-Activity Relationship , alpha7 Nicotinic Acetylcholine Receptor
15.
Environ Pollut ; 244: 980-994, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30469293

ABSTRACT

Average nitrogen (N) deposition across Europe has declined since the 1990s. This resulted in decreased N inputs to forest ecosystems especially in Central and Western Europe where deposition levels are highest. While the impact of atmospheric N deposition on forests has been receiving much attention for decades, ecosystem responses to the decline in N inputs received less attention. Here, we review observational studies reporting on trends in a number of indicators: soil acidification and eutrophication, understory vegetation, tree nutrition (foliar element concentrations) as well as tree vitality and growth in response to decreasing N deposition across Europe. Ecosystem responses varied with limited decrease in soil solution nitrate concentrations and potentially also foliar N concentrations. There was no large-scale response in understory vegetation, tree growth, or vitality. Experimental studies support the observation of a more distinct reaction of soil solution and foliar element concentrations to changes in N supply compared to the three other parameters. According to the most likely scenarios, further decrease of N deposition will be limited. We hypothesize that this expected decline will not cause major responses of the parameters analysed in this study. Instead, future changes might be more strongly controlled by the development of N pools accumulated within forest soils, affected by climate change and forest management.


Subject(s)
Forests , Nitrates/analysis , Nitrogen Cycle , Nitrogen/analysis , Soil/chemistry , Trees/chemistry , Climate Change , Europe , Eutrophication , Observational Studies as Topic , Trees/growth & development
16.
Tree Physiol ; 37(2): 199-208, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28100710

ABSTRACT

An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ13C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses.


Subject(s)
Chlorophyll/metabolism , Trees/metabolism , Biodiversity , Chlorophyll A , Fluorescence , Photosynthesis/physiology , Trees/classification
17.
Nat Commun ; 7: 11109, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27010076

ABSTRACT

There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, 'complementarity' and 'selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the 'jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity-multifunctionality relationships in many of the world's ecosystems.


Subject(s)
Biodiversity , Forests , Europe , Models, Theoretical , Species Specificity , Trees/physiology
18.
Tree Physiol ; 35(3): 331-40, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25725363

ABSTRACT

The presence of the American root-rot disease fungus Heterobasidion irregulare Garbel. & Otrosina was detected in Italian coastal pine forests (Pinus pinea L.) in addition to the common native species Heterobasidion annosum (Fries) Brefeld. High levels of tropospheric ozone (O3) as an atmospheric pollutant are usually experienced in Mediterranean pine forests. To explore the effect of interaction between the two Heterobasidion species and ozone pollution on P. pinea, an open-top chamber (OTC) experiment was carried out. Five-year-old P. pinea seedlings were inoculated with the fungal species considered (H. irregulare, H. annosum and mock-inoculation as control), and then exposed in charcoal-filtered open-top chambers (CF-OTC) and non-filtered ozone-enriched chambers (NF+) from July to the first week of August 2010 at the experimental facilities of Curno (North Italy). Fungal inoculation effects in an ozone-enriched environment were assessed as: (i) the length of the inoculation lesion; (ii) chlorophyll a fluorescence (ChlF) responses; and (iii) analysis of resin terpenes. Results showed no differences on lesion length between fungal and ozone treatments, whereas the short-term effects of the two stress factors on ChlF indicate an increased photosynthetic efficiency, thus suggesting the triggering of compensation/repair processes. The total amount of resin terpenes is enhanced by fungal infection of both species, but depressed by ozone to the levels observed in mock-inoculated plants. Variations in terpene profiles were also induced by stem base inoculations and ozone treatment. Ozone might negatively affect terpene defences making plants more susceptible to pathogens and insects.


Subject(s)
Basidiomycota , Ozone/pharmacology , Pinus/microbiology , Pinus/physiology , Plant Diseases/microbiology , Chlorophyll/chemistry , Chlorophyll A , Photosynthesis/drug effects , Photosynthesis/physiology , Pinus/drug effects , Resins, Plant/analysis , Seedlings/drug effects , Seedlings/microbiology , Seedlings/physiology , Terpenes/analysis
19.
Plant Physiol Biochem ; 85: 105-13, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25463266

ABSTRACT

Nine short-term independent studies were carried out with two M-PEA units on several plant species differing in their functional traits (woody evergreen, woody deciduous, herbaceous) and exposed to different kind of abiotic stress (drought, salt, ozone, UV radiation). Aim of the study is to check the consistency of plant responses, assessed through three sets of simultaneously measured signals: Prompt Fluorescence (PF), Delayed Fluorescence (DF) and Modulated Reflectance of 820 nm light (MR). The decrease of F(V)/F(M) and F0, the increase of V(J) and V(I) were the most common responses related to PF parameters.The decrease of vox and vred as well the increase of MR min were common response of MR. DF showed species-treatment specific behaviours. The Principal Component Analysis (PCA) suggests that the combination of PF and MR parameters represents a powerful tool for plant stress phenotyping, whereas MR parameters are linked to physiological strategies, related to different functional groups, to cope with stress factors.


Subject(s)
Chlorophyll/metabolism , Fluorescence , Plant Physiological Phenomena , Plants/metabolism , Stress, Physiological , Droughts
SELECTION OF CITATIONS
SEARCH DETAIL