Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Fish Biol ; 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402692

ABSTRACT

Coercive mating is a sexual selection strategy that is likely to influence female cognition. Female harassment levels have been linked to altered brain gene expression patterns and brain size evolution, suggesting females may respond to coercive mating by investing energy into "outsmarting" males. However, females exposed to coercive males have decreased foraging efficiency and likely increased stress levels, suggesting their brain function might instead be impaired. While it is therefore likely that coercive mating impacts female cognitive abilities, a direct test of this idea is currently lacking. In this study, we investigate the impact of coercive mating on female spatial memory and cognitive flexibility in a species with prevalent coercive mating. We compared the performance of female porthole livebearers (Poeciliopsis gracilis), which had been previously housed alone or with a coercive male, in both a spatial food localization task and a reversal learning task. While we found that both single and paired fish exhibited high proficiency in learning both tasks, we found no differences in learning ability between females that had or had not experienced coercive mating. In addition, our study found that the presence of a coercive male had no impact on female fecundity, but did influence female mass and standard length. Several studies have assumed that the presence of males, particularly coercive males, may affect the cognitive performance of female fish. However, our study shows that for some species females adapted to coercive mating regimes may be unaffected by male presence with regards to some cognitive tasks.

2.
Mol Biol Evol ; 38(6): 2627-2638, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33620468

ABSTRACT

The evolutionary origin of complex organs challenges empirical study because most organs evolved hundreds of millions of years ago. The placenta of live-bearing fish in the family Poeciliidae represents a unique opportunity to study the evolutionary origin of complex organs, because in this family a placenta evolved at least nine times independently. It is currently unknown whether this repeated evolution is accompanied by similar, repeated, genomic changes in placental species. Here, we compare whole genomes of 26 poeciliid species representing six out of nine independent origins of placentation. Evolutionary rate analysis revealed that the evolution of the placenta coincides with convergent shifts in the evolutionary rate of 78 protein-coding genes, mainly observed in transporter- and vesicle-located genes. Furthermore, differences in sequence conservation showed that placental evolution coincided with similar changes in 76 noncoding regulatory elements, occurring primarily around genes that regulate development. The unexpected high occurrence of GATA simple repeats in the regulatory elements suggests an important function for GATA repeats in developmental gene regulation. The distinction in molecular evolution observed, with protein-coding parallel changes more often found in metabolic and structural pathways, compared with regulatory change more frequently found in developmental pathways, offers a compelling model for complex trait evolution in general: changing the regulation of otherwise highly conserved developmental genes may allow for the evolution of complex traits.


Subject(s)
Biological Evolution , Genome , Placenta , Poecilia/genetics , Viviparity, Nonmammalian/genetics , Amino Acid Substitution , Animals , Female , Pregnancy , Selection, Genetic
3.
J Evol Biol ; 35(7): 948-961, 2022 07.
Article in English | MEDLINE | ID: mdl-35612319

ABSTRACT

Superfetation, the ability to carry several overlapping broods at different developmental stages, has evolved independently multiple times within the live-bearing fish family Poeciliidae. Even though superfetation is widespread among poeciliids, its evolutionary advantages remain unclear. Theory predicts that superfetation should increase polyandry by increasing the probability that temporally overlapping broods are fertilized by different fathers. Here, we test this key prediction in two poeciliid species that each carry two temporally overlapping broods: Poeciliopsis retropinna and P. turrubarensis. We collected 25 females per species from freshwater streams in South-Eastern Costa Rica and assessed multiple paternity by genotyping all their embryos (420 embryos for P. retropinna; 788 embryos for P. turrubarensis) using existing and newly developed microsatellite markers. We observed a high frequency of unique sires in the simultaneous, temporally overlapping broods in P. retropinna (in 56% of the pregnant females) and P. turrubarensis (79%). We found that the mean number of sires within females was higher than the number of sires within the separate broods (2.92 sires within mothers vs. 2.36 within separate broods in P. retropinna; and 3.40 vs 2.56 in P. turrubarensis). We further observed that there were significant differences in the proportion of offspring sired by each male in 42% of pregnant female P. retropinna and 65% of female P. turrubarensis; however, this significance applied to only 9% and 46% of the individual broods in P. retropinna and P. turrubarensis, respectively, suggesting that the unequal reproductive success of sires (i.e. reproductive skew) mostly originated from differences in paternal contribution between, rather than within broods. Together, these findings tentatively suggest that superfetation may promote polyandry and reproductive skew in live-bearing fishes.


Subject(s)
Cyprinodontiformes , Superfetation , Animals , Female , Male , Microsatellite Repeats , Paternity , Pregnancy , Reproduction , Sexual Behavior, Animal
4.
J Exp Biol ; 225(2)2022 01 15.
Article in English | MEDLINE | ID: mdl-34964050

ABSTRACT

How pregnant mothers allocate limited resources to different biological functions such as maintenance, somatic growth, and reproduction can have profound implications for early life development and survival of offspring. Here, we examined the effects of maternal food restriction during pregnancy on offspring in the matrotrophic (i.e. mother-nourishment throughout gestation) live-bearing fish species Phalloptychus januarius (Poeciliidae). We fed pregnant females with either low or high food levels for 6 weeks and quantified the consequences for offspring size and body fat at birth and 1 week after birth. We further measured fast-start escape performance of offspring at birth, as well as swimming kinematics during prey capture at 0, 2 and 7 days after birth. We found that the length of maternal food restriction during pregnancy negatively affected offspring dry mass and lean dry mass at birth, as well as body fat gain during the first week after birth. Moreover, it impacted the locomotor performance of offspring during prey capture at birth and during the first week after birth. We did not observe an effect of food restriction on fast-start escape performance of offspring. Our study suggests that matrotrophic poeciliid fish are maladapted to unpredictably fluctuating resource environments, because sudden reductions in maternal food availability during pregnancy result in smaller offspring with slower postnatal body fat gain and an inhibition of postnatal improving swimming skills during feeding, potentially leading to lower competitive abilities after birth.


Subject(s)
Cyprinodontiformes , Placenta , Animals , Female , Humans , Mothers , Pregnancy , Reproduction , Swimming
5.
Mol Biol Evol ; 37(9): 2679-2690, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32421768

ABSTRACT

Placentation evolved many times independently in vertebrates. Although the core functions of all placentas are similar, we know less about how this similarity extends to the molecular level. Here, we study Poeciliopsis, a unique genus of live-bearing fish that have independently evolved complex placental structures at least three times. The maternal follicle is a key component of these structures. It envelops yolk-rich eggs and is morphologically simple in lecithotrophic species but has elaborate villous structures in matrotrophic species. Through sequencing, the follicle transcriptome of a matrotrophic, Poeciliopsis retropinna, and lecithotrophic, P. turrubarensis, species we found genes known to be critical for placenta function expressed in both species despite their difference in complexity. Additionally, when we compare the transcriptome of different river populations of P. retropinna, known to vary in maternal provisioning, we find differential expression of secretory genes expressed specifically in the top layer of villi cells in the maternal follicle. This provides some of the first evidence that the placental structures of Poeciliopsis function using a secretory mechanism rather than direct contact with maternal circulation. Finally, when we look at the expression of placenta proteins at the maternal-fetal interface of a larger sampling of Poeciliopsis species, we find expression of key maternal and fetal placenta proteins in their cognate tissue types of all species, but follicle expression of prolactin is restricted to only matrotrophic species. Taken together, we suggest that all Poeciliopsis follicles are poised for placenta function but require expression of key genes to form secretory villi.


Subject(s)
Biological Evolution , Cyprinodontiformes/metabolism , Placentation , Viviparity, Nonmammalian , Animals , Cyprinodontiformes/anatomy & histology , Female , Pregnancy , Pregnancy Proteins/metabolism , Prolactin/metabolism , Secretory Pathway/genetics , Transcriptome
6.
Mol Biol Evol ; 37(5): 1376-1386, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31960923

ABSTRACT

The evolution of a placenta is predicted to be accompanied by rapid evolution of genes involved in processes that regulate mother-offspring interactions during pregnancy, such as placenta formation, embryonic development, and nutrient transfer to offspring. However, these predictions have only been tested in mammalian species, where only a single instance of placenta evolution has occurred. In this light, the genus Poeciliopsis is a particularly interesting model for placenta evolution, because in this genus a placenta has evolved independently from the mammalian placenta. Here, we present and compare genome assemblies of two species of the livebearing fish genus Poeciliopsis (family Poeciliidae) that differ in their reproductive strategy: Poeciliopsis retropinna which has a well-developed complex placenta and P. turrubarensis which lacks a placenta. We applied different assembly strategies for each species: PacBio sequencing for P. retropinna (622-Mb assembly, scaffold N50 of 21.6 Mb) and 10× Genomics Chromium technology for P. turrubarensis (597-Mb assembly, scaffold N50 of 4.2 Mb). Using the high contiguity of these genome assemblies and near-completeness of gene annotations to our advantage, we searched for gene duplications and performed a genome-wide scan for genes evolving under positive selection. We find rapid evolution in major parts of several molecular pathways involved in parent-offspring interaction in P. retropinna, both in the form of gene duplications as well as positive selection. We conclude that the evolution of the placenta in the genus Poeciliopsis is accompanied by rapid evolution of genes involved in similar genomic pathways as found in mammals.


Subject(s)
Cyprinodontiformes/genetics , Genome , Life History Traits , Selection, Genetic , Viviparity, Nonmammalian/genetics , Animals , Female , Gene Duplication , Male , Placenta , Pregnancy
7.
J Evol Biol ; 34(7): 1144-1155, 2021 07.
Article in English | MEDLINE | ID: mdl-34081811

ABSTRACT

Reproductive mode is predicted to influence the form of sexual selection. The viviparity-driven conflict hypothesis posits that a shift from lecithotrophic (yolk-nourished) to matrotrophic (mother-nourished or placental) viviparity drives a shift from precopulatory towards post-copulatory sexual selection. In lecithotrophic species, we predict that precopulatory sexual selection will manifest as males exhibiting a broad distribution of sizes, and small and large males exhibiting contrasting phenotypes (morphology and coloration); conversely, in matrotrophic species, an emphasis on post-copulatory sexual selection will preclude these patterns. We test these predictions by gathering data on male size, morphology and coloration for five sympatric Costa Rican poeciliid species that differ in reproductive mode (i.e. lecithotrophy vs. matrotrophy). We find tentative support for these predictions of the viviparity-driven conflict hypothesis, with some interesting caveats and subtleties. In particular, we find that the three lecithotrophic species tend to show a broader distribution of male sizes than matrotrophic species. Furthermore, large males of such species tend to exhibit proportionately large dorsal and caudal fins and short gonopodia relative to small males, while these patterns are expressed to a lesser extent in the two matrotrophic species. Finally, large males in some of the lecithotrophic species exhibit darker fins relative to small males, a pattern not evident in either matrotrophic species. One unexpected finding was that even in the matrotrophic species Poeciliopsis retropinna and Poeciliopsis paucimaculata, which lack courtship and dichromatic coloration, some morphological traits exhibit significant allometric relationships, suggesting that even in these species precopulatory sexual selection may be present and shaping size-specific male phenotypes in subtle ways.


Subject(s)
Cyprinodontiformes , Placenta , Animals , Female , Male , Phenotype , Pregnancy , Reproduction
8.
Ecol Lett ; 23(5): 831-840, 2020 May.
Article in English | MEDLINE | ID: mdl-32166847

ABSTRACT

The placenta is a complex life-history trait that is ubiquitous across the tree of life. Theory proposes that the placenta evolves in response to high performance-demanding conditions by shifting maternal investment from pre- to post-fertilisation, thereby reducing a female's reproductive burden during pregnancy. We test this hypothesis by studying populations of the fish species Poeciliopsis retropinna in Costa Rica. We found substantial variation in the degree of placentation among natural populations associated with predation risk: females from high predation populations had significantly higher degrees of placentation compared to low predation females, while number, size and quality of offspring at birth remained unaffected. Moreover, a higher degree of placentation correlated with a lower reproductive burden and hence likely an improved swimming performance during pregnancy. Our study advances an adaptive explanation for why the placenta evolves by arguing that an increased degree of placentation offers a selective advantage in high predation environments.


Subject(s)
Cyprinodontiformes , Placentation , Animals , Biological Evolution , Costa Rica , Female , Pregnancy , Reproduction
9.
Oecologia ; 194(4): 635-648, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33141323

ABSTRACT

Parasites can negatively affect the reproductive success of hosts. Placental species may be particularly susceptible, because parasite-induced stress during pregnancy could potentially influence embryo development. Here, we examine the consequences of a trematode infestation (black spot disease, BSD) for fetal development and adult behavior in 19 natural populations of the placental live-bearing fish species Poeciliopsis retropinna (Poeciliidae) in Costa Rica. First, we observed substantial variation in parasite infestation among populations which correlated with a number of local environmental conditions (elevation, river width, depth, and flow velocity). Furthermore, we observed substantial variation in parasite infestation among females within populations associated with maternal age and size. We found that the infestation rate significantly influenced embryonic development, with more heavily parasitized females producing smaller and worse-conditioned offspring at birth, possibly, because a costly immune response during pregnancy limits, either directly or indirectly, nourishment to developing embryos. Finally, a behavioral experiment in the field showed that the infestation rate did not affect an individual's boldness. Our study indicates that in placental live-bearing fish parasite infestation leads to reduced embryo provisioning during pregnancy, resulting in a smaller offspring size and quality at birth potentially with negative implications for offspring fitness.


Subject(s)
Cyprinodontiformes , Parasites , Animals , Costa Rica , Female , Placenta , Pregnancy , Reproduction
10.
BMC Evol Biol ; 19(1): 156, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31349784

ABSTRACT

BACKGROUND: The evolution of complex organs is thought to occur via a stepwise process, each subsequent step increasing the organ's complexity by a tiny amount. This evolutionary process can be studied by comparing closely related species that vary in the presence or absence of their organs. This is the case for the placenta in the live-bearing fish family Poeciliidae, as members of this family vary markedly in their ability to supply nutrients to their offspring via a placenta. Here, we investigate the genomic basis underlying this phenotypic variation in Heterandria formosa, a poeciliid fish with a highly complex placenta. We compare this genome to three published reference genomes of non-placental poeciliid fish to gain insight in which genes may have played a role in the evolution of the placenta in the Poeciliidae. RESULTS: We sequenced the genome of H. formosa, providing the first whole genome sequence for a placental poeciliid. We looked for signatures of adaptive evolution by comparing its gene sequences to those of three non-placental live-bearing relatives. Using comparative evolutionary analyses, we found 17 genes that were positively selected exclusively in H. formosa, as well as five gene duplications exclusive to H. formosa. Eight of the genes evolving under positive selection in H. formosa have a placental function in mammals, most notably endometrial tissue remodelling or endometrial cell proliferation. CONCLUSIONS: Our results show that a substantial portion of positively selected genes have a function that correlates well with the morphological changes that form the placenta of H. formosa, compared to the corresponding tissue in non-placental poeciliids. These functions are mainly endometrial tissue remodelling and endometrial cell proliferation. Therefore, we hypothesize that natural selection acting on genes involved in these functions plays a key role in the evolution of the placenta in H. formosa.


Subject(s)
Biological Evolution , Conserved Sequence , Cyprinodontiformes/genetics , Genome , Placenta/physiology , Animals , Female , Gene Duplication , Pregnancy , Selection, Genetic , Whole Genome Sequencing
11.
Proc Biol Sci ; 286(1916): 20192245, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31771468

ABSTRACT

Superfetation, the ability to simultaneously carry multiple litters of different developmental stages in utero, is a reproductive strategy that evolved repeatedly in viviparous animal lineages. The evolution of superfetation is hypothesized to reduce the reproductive burden and, consequently, improve the locomotor performance of the female during pregnancy. Here, we apply new computer-vision-based techniques to study changes in body shape and three-dimensional fast-start escape performance during pregnancy in three live-bearing fishes (family Poeciliidae) that exhibit different levels of superfetation. We found that superfetation correlates with a reduced abdominal distension and a more slender female body shape just before parturition. We further found that body slenderness positively correlates with maximal speeds, curvature amplitude and curvature rate, implying that superfetation improves the fast-start escape performance. Collectively, our study suggests that superfetation may have evolved in performance-demanding (e.g. high flow or high predation) environments to reduce the locomotor cost of pregnancy.


Subject(s)
Cyprinodontiformes/physiology , Superfetation/physiology , Animals , Female , Pregnancy , Reproduction
12.
J Exp Biol ; 221(Pt 7)2018 04 06.
Article in English | MEDLINE | ID: mdl-29487155

ABSTRACT

Fish make C-starts to evade predator strikes. Double-bend (DB) C-starts consist of three stages: Stage 1, in which the fish rapidly bends into a C-shape; Stage 2, in which the fish bends in the opposite direction; and a variable Stage 3. In single-bend (SB) C-starts, the fish immediately straightens after Stage 1. Despite fish moving in three-dimensional (3D) space, fast-start responses of adult fish have mainly been studied in a horizontal plane. Using automated 3D tracking of multi-camera high-speed video sequences, we show that both SB and DB fast-starts by adult female least killifish (Heterandria formosa) often contain a significant vertical velocity component, and large changes in pitch (DB up to 43 deg) and roll (DB up to 77 deg) angles. Upwards and downwards elevation changes are correlated with changes in pitch angle of the head; movement in the horizontal plane is correlated with changes in yaw angle of the head. With respect to the stimulus, escape heading correlates with the elevation of the fish at the onset of motion. Irrespective of the initial orientation, fish can escape in any horizontal direction. In many cases, the centre of mass barely accelerates during Stage 1. However, it does accelerate in the final direction of the escape in other instances, indicating that Stage 1 can serve a propulsive role in addition to its preparatory role for Stage 2. Our findings highlight the importance of large-scale 3D analyses of fast-start manoeuvres of adult fish in uncovering the versatility of fish escape repertoire.


Subject(s)
Cyprinodontiformes/physiology , Escape Reaction , Animals , Biomechanical Phenomena , Female , Orientation , Predatory Behavior
13.
Oecologia ; 183(1): 81-91, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27704241

ABSTRACT

Animal-mediated seed dispersal (zoochory) is considered to be an important mechanism regulating biological processes at larger spatial scales. To date, intra-specific variation in seed disperser quality within seed-dispersing animals has not been studied. Here, I employed seed feeding trials to quantify individual differences in disperser quality within the common carp (Cyprinus carpio) using seeds of two aquatic plants: unbranched bur-reed (Sparganium emersum, Sparganiaceae) and arrowhead (Sagittaria sagittifolia, Alismataceae). I found substantial variation among carp individuals in their propensity to ingest seeds and their ability to digest them, resulting in up to 31-fold differences in the probability of seed dispersal. In addition, there were significant differences in the time that seeds are retained in their digestive systems, generating a twofold difference in the maximum distance over which they can potentially disperse seeds. I propose that seed-eating animal species consist of individuals that display continuous variation in disperser quality, with at one end of the continuum individuals that are likely to eat seeds, pass them unharmed through their digestive tract and transport them over large distances to new locations (i.e. high-quality seed dispersers) and at the other end individuals that rarely eat seeds, destroy most of the ones they ingest and transport the few surviving seeds over relatively short distances (low-quality seed dispersers). Although individual differences in seed dispersal quality could be the result of a variety of factors, these results underline the ecological and evolutionary potential of such variation for both plants and animals.


Subject(s)
Carps , Individuality , Animals , Eating , Seed Dispersal , Seeds
14.
Proc Biol Sci ; 283(1834)2016 07 13.
Article in English | MEDLINE | ID: mdl-27412277

ABSTRACT

Live-bearing fish start hunting for mobile prey within hours after birth, an example of extreme precociality. Because prenatal, in utero, development of this behaviour is constrained by the lack of free-swimming sensory-motor interactions, immediate success after birth depends on innate, evolutionarily acquired patterns. Optimal performance however requires flexible adjustment to an unpredictable environment. To distinguish innate from postnatally developing patterns we analysed over 2000 prey capture events for 28 metallic livebearers (Girardinus metallicus; Poeciliidae), during their first 3 days after birth. We show that the use of synchronous pectoral fin beats for final acceleration and ingestion is fixed and presumably innate. It allows for direct, symmetrical control of swimming speed and direction, while avoiding head yaw. Eye movements and body curvatures, however, change considerably in the first few days, showing that eye-tail coordination requires postnatal development. The results show how successful prey captures for newborn, live-bearing fish are based on a combination of fixed motor programmes and rapid, postnatal development.


Subject(s)
Fishes/physiology , Predatory Behavior , Acceleration , Animals , Environment , Female , Swimming , Viviparity, Nonmammalian
15.
Sci Adv ; 9(34): eadf3915, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37611099

ABSTRACT

An outstanding question in biology is to what extent convergent evolution produces similar, but not necessarily identical, complex phenotypic solutions. The placenta is a complex organ that repeatedly evolved in the livebearing fish family Poeciliidae. Here, we apply comparative approaches to test whether evolution has produced similar or different placental phenotypes in the Poeciliidae and to what extent these phenotypes correlate with convergence at the molecular level. We show the existence of two placental phenotypes characterized by distinctly different anatomical adaptations (divergent evolution). Furthermore, each placental phenotype independently evolved multiple times across the family, providing evidence for repeated convergence. Moreover, our comparative genomic analysis revealed that the genomes of species with different placentas are evolving at a different pace. Last, we show that the two placental phenotypes correlate with two previously described contrasting life-history optima. Our results argue for high evolvability (both divergent and convergent) of the placenta within a group of closely related species in a single family.


Subject(s)
Acclimatization , Placenta , Female , Pregnancy , Animals , Fishes/genetics , Phenotype
16.
Neurosci Biobehav Rev ; 138: 104627, 2022 07.
Article in English | MEDLINE | ID: mdl-35339483

ABSTRACT

Early-life adversity (ELA) is a major risk factor for developing later-life mental and metabolic disorders. However, if and to what extent ELA contributes to the comorbidity and sex-dependent prevalence/presentation of these disorders remains unclear. We here comprehensively review and integrate human and rodent ELA (pre- and postnatal) studies examining mental or metabolic health in both sexes and discuss the role of the placenta and maternal milk, key in transferring maternal effects to the offspring. We conclude that ELA impacts mental and metabolic health with sex-specific presentations that depend on timing of exposure, and that human and rodent studies largely converge in their findings. ELA is more often reported to impact cognitive and externalizing domains in males, internalizing behaviors in both sexes and concerning the metabolic dimension, adiposity in females and insulin sensitivity in males. Thus, ELA seems to be involved in the origin of the comorbidity and sex-specific prevalence/presentation of some of the most common disorders in our society. Therefore, ELA-induced disease states deserve specific preventive and intervention strategies.


Subject(s)
Adverse Childhood Experiences , Metabolic Diseases , Animals , Comorbidity , Female , Humans , Male , Metabolic Diseases/epidemiology , Metabolic Diseases/etiology , Pregnancy , Risk Factors , Rodentia
17.
Curr Biol ; 31(9): 2004-2011.e5, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33657405

ABSTRACT

How and why complex organs evolve is generally lost to history. The mammalian placenta, for example, was derived from a single common ancestor that lived over 100 million years ago.1-3 Therefore, the selective factors favoring this complex trait remain obscure. Species in the live-bearing fish family Poeciliidae have independently evolved placentas numerous times while retaining closely related non-placental sister species.4-7 This provides the raw material to test alternative hypotheses for the evolution of the placenta. We assemble an extensive species-level dataset on reproductive mode, life histories, and habitat, and then implement phylogenetic comparative methods to test adaptive hypotheses for the evolution of the placenta. We find no consistent family-wide associations between placentation and habitat. However, placental species exhibit significantly reduced reproductive allotment and have a higher likelihood of exhibiting superfetation (the ability to gestate multiple broods at different developmental stages). Both features potentially increase body streamlining and enhance locomotor performance during pregnancy, possibly providing selective advantage in performance-demanding environments such as those with high predation or fast water flow. Furthermore, we found significant interactions between body size and placentation for offspring size and fecundity. Relative to non-placental species, placentation is associated with higher fecundity and smaller offspring size in small-bodied species and lower fecundity and larger offspring size in large-bodied species. This pattern suggests that there may be two phenotypic adaptive peaks, corresponding to two selective optima, associated with placentation: one represented by small-bodied species that have fast life histories, and the second by large-bodied species with slow life histories.


Subject(s)
Biological Evolution , Cyprinodontiformes , Placenta , Animals , Body Size , Female , Phylogeny , Pregnancy , Reproduction
18.
J R Soc Interface ; 16(151): 20180714, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30958187

ABSTRACT

Swimming performance of pregnant live-bearing fish is presumably constrained by the additional drag associated with the reproductive burden. Yet, it is still unclear how and to what extent the reproductive investment affects body drag of the females. We examined the effect of different levels of reproductive investment on body drag. The biggest measured increase in body volume due to pregnancy was about 43%, linked to a wetted area increase of about 16% and 69% for the frontal area. We printed three-dimensional models of live-bearing fish in a straight body posture representing different reproductive allocation (RA) levels. We measured the drag and visualized the flow around these models in a flow tunnel at different speeds. Drag grew in a power fashion with speed and exponentially with the increase of RA, thus drag penalty for becoming thicker was relatively low for low speeds compared to high ones. We show that the drag increase with increasing RA was most probably due to bigger regions of flow separation behind the enlarged belly. We suggest that the rising drag penalty with an increasing RA, possibly together with pregnancy-related negative effects on muscle- and abdominal bending performance, will reduce the maximum swimming speed.


Subject(s)
Fishes/physiology , Models, Biological , Swimming/physiology , Animals , Biomechanical Phenomena , Female
19.
Nat Commun ; 10(1): 3335, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31350395

ABSTRACT

In live-bearing animal lineages, the evolution of the placenta is predicted to create an arena for genomic conflict during pregnancy, drive patterns of male sexual selection, and increase the rate of speciation. Here we test these predictions of the viviparity driven conflict hypothesis (VDCH) in live-bearing poecilid fishes, a group showing multiple independent origins of placentation and extreme variation in male sexually selected traits. As predicted, male sexually selected traits are only gained in lineages that lack placentas; while there is little or no influence of male traits on the evolution of placentas. Both results are consistent with the mode of female provisioning governing the evolution of male attributes. Moreover, it is the presence of male sexually selected traits (pre-copulatory), rather than placentation (post-copulatory), that are associated with higher rates of speciation. These results highlight a causal interaction between female reproductive mode, male sexual selection and the rate of speciation, suggesting a role for conflict in shaping diverse aspects of organismal biology.


Subject(s)
Biological Evolution , Fishes/genetics , Animals , Body Size , Female , Fishes/classification , Fishes/growth & development , Fishes/physiology , Male , Phylogeny , Placenta/physiology , Placentation , Pregnancy , Reproduction
20.
Ecol Evol ; 8(24): 12386-12396, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30619553

ABSTRACT

Maternal effects often provide a mechanism for adaptive transgenerational phenotypic plasticity. The maternal phenotype can profoundly influence the potential for such environmentally induced adjustments of the offspring phenotype, causing correlations between offspring and maternal traits. Here, we study potential effects of the maternal phenotype on offspring provisioning prior to and during gestation in the matrotrophic live-bearing fish species Poeciliopsis retropinna. Specifically, we examine how maternal traits such as body fat, lean mass, and length relate to pre- (i.e., allocation to the egg prior to fertilization) and post-fertilization (i.e., allocation to the embryo during pregnancy) maternal provisioning and how this ultimately affects offspring size and body composition at birth. We show that pre- and post-fertilization maternal provisioning is associated with maternal length and body fat, but not with maternal lean mass. Maternal length is proportionally associated with egg mass at fertilization and offspring mass at birth, notably without changing the ratio of pre- to post-fertilization maternal provisioning. This ratio, referred to as the matrotrophy index (MI), is often used to quantify the level of matrotrophy. By contrast, the proportion of maternal body fat is positively associated with post-fertilization, but not pre-fertilization, maternal provisioning and consequently is strongly positively correlated with the MI. We furthermore found that the composition of embryos changes throughout pregnancy. Females invest first in embryo lean mass, and then allocate fat reserves to embryos very late in pregnancy. We argue that this delay in fat allocation may be adaptive, because it delays an unnecessary high reproductive burden to the mother during earlier stages of pregnancy, potentially leading to a more slender body shape and improved locomotor performance. In conclusion, our study suggests that (a) offspring size at birth is a plastic trait that is predicted by both maternal length and body fat, and (b) the MI is a plastic trait that is predicted solely by the proportion of maternal body fat. It herewith provides new insights into the potential maternal causes and consequences of embryo provisioning during pregnancy in matrotrophic live-bearing species.

SELECTION OF CITATIONS
SEARCH DETAIL