Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Proc Natl Acad Sci U S A ; 120(21): e2217189120, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37186841

ABSTRACT

Protonation reactions involving organometallic complexes are ubiquitous in redox chemistry and often result in the generation of reactive metal hydrides. However, some organometallic species supported by η5-pentamethylcyclopentadienyl (Cp*) ligands have recently been shown to undergo ligand-centered protonation by direct proton transfer from acids or tautomerization of metal hydrides, resulting in the generation of complexes bearing the uncommon η4-pentamethylcyclopentadiene (Cp*H) ligand. Here, time-resolved pulse radiolysis (PR) and stopped-flow spectroscopic studies have been applied to examine the kinetics and atomistic details involved in the elementary electron- and proton-transfer steps leading to complexes ligated by Cp*H, using Cp*Rh(bpy) as a molecular model (where bpy is 2,2'-bipyridyl). Stopped-flow measurements coupled with infrared and UV-visible detection reveal that the sole product of initial protonation of Cp*Rh(bpy) is [Cp*Rh(H)(bpy)]+, an elusive hydride complex that has been spectroscopically and kinetically characterized here. Tautomerization of the hydride leads to the clean formation of [(Cp*H)Rh(bpy)]+. Variable-temperature and isotopic labeling experiments further confirm this assignment, providing experimental activation parameters and mechanistic insight into metal-mediated hydride-to-proton tautomerism. Spectroscopic monitoring of the second proton transfer event reveals that both the hydride and related Cp*H complex can be involved in further reactivity, showing that [(Cp*H)Rh] is not necessarily an off-cycle intermediate, but, instead, depending on the strength of the acid used to drive catalysis, an active participant in hydrogen evolution. Identification of the mechanistic roles of the protonated intermediates in the catalysis studied here could inform design of optimized catalytic systems supported by noninnocent cyclopentadienyl-type ligands.

2.
J Am Chem Soc ; 146(15): 10524-10536, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38507247

ABSTRACT

The reaction steps for the selective conversion of a transition metal carbonyl complex to a hydroxymethyl complex that releases methanol upon irradiation with visible light have been successfully quantified in acetonitrile solution with dihydrobenzimidazole organic hydride reductants. Dihydrobenzimidazole reductants have been shown to be inactive toward H2 generation in the presence of a wide range of proton sources and have been regenerated electrochemically or photochemically. Specifically, the reaction of cis-[Ru(bpy)2(CO)2]2+ (bpy = 2,2'-bipyridine) with one equivalent of a dihydrobenzimidazole quantitatively yields a formyl complex, cis-[Ru(bpy)2(CO)(CHO)]+, and the corresponding benzimidazolium on a seconds time scale. Kinetic experiments revealed a first-order dependence on the benzimidazole hydride concentration and an unusually large kinetic isotope effect, inconsistent with direct hydride transfer and more likely to occur by an electron transfer-proton-coupled electron transfer (EΤ-PCET) or related mechanism. Further reduction/protonation of cis-[Ru(bpy)2(CO)(CHO)]+ with two equivalents of the organic hydride yields the hydroxymethyl complex cis-[Ru(bpy)2(CO)(CH2OH)]+. Visible light excitation of cis-[Ru(bpy)2(CO)(CH2OH)]+ in the presence of excess organic hydride was shown to yield free methanol. Identification and quantification of methanol as the sole CO reduction product was confirmed by 1H NMR spectroscopy and gas chromatography. The high selectivity and mild reaction conditions suggest a viable approach for methanol production from CO, and from CO2 through cascade catalysis, with renewable organic hydrides that bear similarities to Nature's NADPH/NADP+.

3.
J Phys Chem A ; 128(21): 4242-4251, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38760329

ABSTRACT

A new homoleptic Ru polypyridyl complex bearing two aldehyde groups on each bipyridine ligand, [Ru(dab)3](PF6)2, where dab is 4,4'-dicarbaldehyde-2,2'-bipyridine, was synthesized, characterized, and utilized for iodide photo-oxidation studies. In acetonitrile (CH3CN) solution, the complex displayed an intense metal-to-ligand charge transfer (MLCT) absorbance maximum at 475 nm (ε = 22,000 M-1 cm-1) and an infrared (IR) band at 1712 cm-1 assigned to the pendent aldehyde groups. Visible light excitation in air-saturated solution resulted in room temperature photoluminescence (PL) with a maximum at 675 nm, a quantum yield, ϕPL = 0.048, and an excited state lifetime, το = 440 ns, from which radiative and nonradiative relaxation rate constants were extracted, kr = 9.1 × 104 s-1 and knr = 1.8 × 106 s-1. Pulsed visible light excitation yielded transient UV-vis and IR absorption spectra consistent with an MLCT excited state; relaxation occurred with the maintenance of two isosbestic points in the visible region, and a lifetime that agreed with that measured by time-resolved PL. Cyclic voltammetry studies in a CH3CN solution with 0.1 M TBAPF6 electrolyte revealed a quasi-reversible oxidation, E°(RuIII/II) = +1.25 V vs. Fc+/0, and three sequential one-electron reductions at -1.10, -1.25, and -1.54 V vs. Fc+/0. An excited state reduction potential of E°(Ru*2+/+) = +0.89 V vs. Fc+/0 was estimated with the Rehm-Weller expression. Titration of tetrabutylammonium iodide, TBAI, into a CD3CN solution of [Ru(dab)3](PF6)2 resulted in significant shifts in the aldehyde H atom and 3,3'-biypridyl resonances that were analyzed with a 1:1 equilibrium model, from which Keq = 460 M-1 was extracted, increasing to 5800 M-1 when the solvent was changed to acetone-d6. Iodide titrations resulted in a significant quenching of the [Ru(dab)3]*2+ lifetime and quantum yield in both CH3CN and acetone solvents. In CH3CN, the quenching was mainly dynamic and well described by the Stern-Volmer model, from which a quenching rate constant, kq, of 4.5 × 1010 M-1 s-1 and an equilibrium constant, Keq, of 8.3 × 103 M-1 were obtained. In acetone, the static quenching pathway by iodide was greatly enhanced, with a Keq of 1.2 × 104 M-1 and a higher kq of 9.2 × 1010 M-1 s-1.

4.
J Am Chem Soc ; 145(20): 11282-11292, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37161731

ABSTRACT

Photovoltages for hydrogen-terminated p-Si(111) in an acetonitrile electrolyte were quantified with methyl viologen [1,1'-(CH3)2-4,4'-bipyridinium](PF6)2, abbreviated MV2+, and [Ru(bpy)3](PF6)2, where bpy is 2,2'-bipyridine, that respectively undergo two and three one-electron transfer reductions. The reduction potentials, E°, of the two MV2+ reductions occurred at energies within the forbidden bandgap, while the three [Ru(bpy)3]2+ reductions occurred within the continuum of conduction band states. Bandgap illumination resulted in reduction that was more positive than that measured with a degenerately doped n+-Si demonstrative of a photovoltage, Vph, that increased in the order MV2+/+ (260 mV) < MV+/0 (400 mV) < Ru2+/+ (530 mV) ∼ Ru+/0 (540 mV) ∼ Ru0/- (550 mV). Pulsed 532 nm excitation generated electron-hole pairs whose dynamics were nearly constant under depletion conditions and increased markedly as the potential was raised or lowered. A long wavelength absorption feature assigned to conduction band electrons provided additional evidence for the presence of an inversion layer. Collectively, the data reveal that the most optimal photovoltage, as well as the longest electron-hole pair lifetime and the highest surface electron concentration, occurs when E° lies energetically within the unfilled conduction band states where an inversion layer is present. The bell-shaped dependence for electron-hole pair recombination with the surface potential was predicted by the time-honored SRH model, providing a clear indication that this interface provides access to all four bias conditions, i.e., accumulation, flat band, depletion, and inversion. The implications of these findings for photocatalysis applications and solar energy conversion are discussed.

5.
Acc Chem Res ; 55(5): 616-628, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35133133

ABSTRACT

Recycling of carbon dioxide to fuels and chemicals is a promising strategy for renewable energy storage. Carbon dioxide conversion can be achieved by (i) artificial photosynthesis using photoinduced electrons; (ii) electrolysis using electricity produced by photovoltaics; and (iii) thermal CO2 hydrogenation using renewable H2. The focus of our group's research is on molecular catalysts, in particular coordination complexes of transition metals (e.g., Mn, Re, and Ru), which offer versatile platforms for mechanistic studies of photo- and electrochemical CO2 reduction. The interactions of catalytic intermediates with Lewis or Brønsted acids, hydrogen-bonding moieties, solvents, cations, etc., that function as promoters or cofactors have become increasingly important for efficient catalysis. These interactions may have dramatic effects on selectivity and rates by stabilizing intermediates or lowering transition state barriers, but they are difficult to elucidate and challenging to predict. We have been carrying out experimental and theoretical studies of CO2 reduction using molecular catalysts toward addressing mechanisms of efficient CO2 reduction systems with emphasis on those containing intramolecular (or pendent) and intermolecular (solution phase) additives. This Account describes the identification of reaction intermediates produced during CO2 reduction in the presence of triethanolamine or ionic liquids, the benefits of hydrogen-bonding interactions among intermediates or cofactors, and the complications of pendent phenolic donors/phenoxide bases under electrochemical conditions.Triethanolamine (TEOA) is a common sacrificial electron donor for photosensitizer excited state reductive quenching and has a long history of use in photocatalytic CO2 reduction. It also functions as a Brønsted base in conjunction with more potent sacrificial electron donors, such as 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH). Deprotonation of the BIH•+ cation radical promotes irreversible photoinduced electron transfer by preventing charge recombination. Despite its wide use, most research to date has not considered the broader reactions of TEOA, including its direct interaction with CO2 or its influence on catalytic intermediates. We found that in acetonitrile, TEOA captures CO2 in the form of a zwitterionic adduct without any metal catalyst. In the presence of ruthenium carbonyl catalysts bearing α-diimine ligands, it participates in metal hydride formation, accelerates hydride transfer to CO2 to form the bound formate intermediate, and assists in the dissociation of formate anion from the catalyst ( J. Am. Chem. Soc. 2020, 142, 2413-2428).Hydrogen bonding and acid/base promoters are understood to interact with key catalytic intermediates, such as the metallocarboxylate or metallocarboxylic acid during CO2 reduction. The former is a high energy species, and hydrogen-bonding or Lewis acid-stabilization are beneficial. We have found that imidazolium-based ionic liquid cations can stabilize the doubly reduced form of the [ReCl(bpy)(CO)3] (bpy = 2,2'-bipyridine) electrocatalyst through both hydrogen-bonding and π-π interactions, resulting in CO2 reduction occurring at a more positive potential with a higher catalytic current ( J. Phys. Chem. Lett. 2014, 5, 2033-2038). Hydrogen bonding interactions between Lewis basic methoxy groups in the second coordination sphere of a Mn-based catalyst and the OH group of the Mn-COOH intermediate in the presence of a Brønsted acid were also found to promote C-(OH) bond cleavage, enabling access to a low-energy protonation-first pathway for CO2 reduction ( J. Am. Chem. Soc. 2017, 139, 2604-2618).The kinetics of forming the metallocarboxylic acid can be enhanced by internal acids, and its proton-induced C-OH bond cleavage to the metallocarbonyl and H2O is often the rate-limiting step. Therefore, proton movement organized by pendent hydrogen-bonding networks may also accelerate this step. In contrast, during electrolysis, OH groups in the second coordination sphere are deprotonated to the oxyanions, which deter catalytic CO2 reduction by directly binding CO2 to form the carbonate or by making an M-O bond in competition with CO2 binding ( Inorg. Chem. 2016, 55, 4582-4594). Our results emphasize that detailed mechanistic research is critical in discovering the design principles for improved catalysts.


Subject(s)
Carbon Dioxide , Ruthenium , Carbon Dioxide/chemistry , Catalysis , Electrons , Oxidation-Reduction
6.
Inorg Chem ; 62(20): 7877-7889, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37159570

ABSTRACT

A dicationic Re bipyridine-type complex, fac-Re(6,6'-(2-((trimethylammonio)-methyl)phenyl)-2,2'-bipyridine )(CO)3Cl hexafluorophosphate (12+), has been synthesized, and its electrochemical behavior under Ar and CO2 has been investigated. The presence of pendent tetra-alkylammonium cations induces an anodic shift in the electrocatalytic potential for CO2 reduction relative to structurally similar model complexes. The electrochemical mechanisms in anhydrous CH3CN and in the presence of weak acids (water or trifluoroethanol) have been analyzed using cyclic voltammetry assisted by infrared spectroelectrochemistry and theoretical calculations. The dication enables catalysis at a diminished potential through Coulombic stabilization of the doubly reduced pentacoordinate species, its CO2 adduct, the hydroxide anion, and the conjugate base formed during acid-assisted C-OH bond cleavage of the metallocarboxylic acid to the metallocarbonyl and H2O. The major reduction product is CO, but in the presence of trifluoroethanol, formate is also produced with 14% Faradaic efficiency.

7.
Inorg Chem ; 62(23): 9146-9157, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37228171

ABSTRACT

A series of dinuclear molecular copper complexes were prepared and used to model the binding and Lewis acid stabilization of CO in heterogeneous copper CO2 reduction electrocatalysts. Experimental studies (including measurement of rate and equilibrium constants) and electronic structure calculations suggest that the key kinetic barrier for CO binding may be a σ-interaction between CuI and the incoming CO ligand. The rate of CO coordination can be increased upon the addition of Lewis acids or electron-withdrawing substituents on the ligand backbone. Conversely, Keq for CO coordination can be increased by adding electron density to the metal centers of the compound, consistent with stronger π-backbonding. Finally, the electrochemically measured kinetic results were mapped onto an electrochemical zone diagram to illustrate how these system changes enabled access to each zone.

8.
J Phys Chem A ; 127(38): 7918-7927, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37721794

ABSTRACT

Formal reduction potentials of highly oxidizing and short-lived radical cations of substituted biphenyls generated by pulse radiolysis in 1,2-dichloroethane (DCE) were measured using a redox equilibrium ladder method. The effect of halide ion-radical interactions on reduction potentials of biphenyls was examined by utilizing the ability of DCE to release Cl- in the vicinity of the radical cation. The Hammett correlation of measured potentials across a range of over 700 mV shows saturation at high Hammett sigma values. This effect has been explained by both ion-pairing and hemicolligation interactions between biphenyl radical cations and Cl- and appears to modulate reduction potentials by as much as 400 mV. This finding offers a convenient way to manipulate the energetics of electron transfer involving organic redox species.

9.
Chemphyschem ; 22(14): 1478-1487, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33990996

ABSTRACT

In this work, the differences in catalytic performance for a series of Co hydrogen evolution catalysts with different pentadentate polypyridyl ligands (L), have been rationalized by examining elementary steps of the catalytic cycle using a combination of electrochemical and transient pulse radiolysis (PR) studies in aqueous solution. Solvolysis of the [CoII -Cl]+ species results in the formation of [CoII (κ4 -L)(OH2 )]2+ . Further reduction produces [CoI (κ4 -L)(OH2 )]+ , which undergoes a rate-limiting structural rearrangement to [CoI (κ5 -L)]+ before being protonated to form [CoIII -H]2+ . The rate of [CoIII -H]2+ formation is similar for all complexes in the series. Using E1/2 values of various Co species and pKa values of [CoIII -H]2+ estimated from PR experiments, we found that while the protonation of [CoIII -H]2+ is unfavorable, [CoII -H]+ reacts with protons to produce H2 . The catalytic activity for H2 evolution tracks the hydricity of the [CoII -H]+ intermediate.

10.
J Am Chem Soc ; 142(5): 2413-2428, 2020 02 05.
Article in English | MEDLINE | ID: mdl-31881154

ABSTRACT

A series of 4,4'-dimethyl-2,2'-bipyridyl ruthenium complexes with carbonyl ligands were prepared and studied using a combination of electrochemical and spectroscopic methods with infrared detection to provide structural information on reaction intermediates in the photochemical reduction of CO2 to formate in acetonitrile (CH3CN). An unsaturated 5-coordinate intermediate was characterized, and the hydride-transfer step to CO2 from a singly reduced metal-hydride complex was observed with kinetic resolution. While triethanolamine (TEOA) was expected to act as a proton acceptor to ensure the sacrificial behavior of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as an electron donor, time-resolved infrared measurements revealed that about 90% of the photogenerated one-electron reduced complexes undergo unproductive back electron transfer. Furthermore, TEOA showed the ability to capture CO2 from CH3CN solutions to form a zwitterionic alkylcarbonate adduct and was actively engaged in key catalytic steps such as metal-hydride formation, hydride transfer to CO2 to form the bound formate intermediate, and dissociation of formate ion product. Collectively, the data provide an overview of the transient intermediates of Ru(II) carbonyl complexes and emphasize the importance of considering the participation of TEOA when investigating and proposing catalytic pathways.

11.
Inorg Chem ; 59(17): 12187-12199, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32804491

ABSTRACT

A new Re bipyridine-type complex, namely, fac-Re(pmbpy)(CO)3Cl (pmbpy = 4-phenyl-6-(2-hydroxy-phenyl)-2,2'-bipyridine), 1, carrying a single OH moiety as local proton source, has been synthesized, and its electrochemical behavior under Ar and under CO2 has been characterized. Two isomers of 1, namely, 1-cis characterized by the proximity of Cl to OH and 1-trans, are identified. The interconversion between 1-cis and 1-trans is clarified by DFT calculations, which reveal two transition states. The energetically lower pathway displays a non-negligible barrier of 75.5 kJ mol-1. The 1e- electrochemical reduction of 1 affords the neutral intermediate 1-OPh, formally derived by reductive deprotonation and loss of Cl- from 1. 1-OPh, which exhibits an entropically favored intramolecular Re-O bond, has been isolated and characterized. The detailed electrochemical mechanism is demonstrated by combined chemical reactivity, spectroelectrochemistry, spectroscopic (IR and NMR), and computational (DFT) approaches. Comparison with previous Re and Mn derivatives carrying local proton sources highlights that the catalytic activity of Re complexes is more sensitive to the presence of local OH groups. Similar to Re-2OH (2OH = 4-phenyl-6-(phenyl-2,6-diol)-2,2'-bipyridine), 1 and Mn-1OH display a selective reduction of CO2 to CO. In the case of the Re bipyridine-type complex, the formation of a relatively stable Re-O bond and a preference for phenolate-based reactivity with CO2 slightly inhibit the electrocatalytic reduction of CO2 to CO, resulting in a low TON value of 9, even in the presence of phenol as a proton source.

12.
J Am Chem Soc ; 141(20): 8020-8024, 2019 05 22.
Article in English | MEDLINE | ID: mdl-31062973

ABSTRACT

Anchoring strategies for immobilization of molecular catalysts, chromophores, and chromophore-catalyst assemblies on electrode surfaces play an important role in solar energy conversion devices such as dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells. They are also important in interfacial studies with surface-bound molecules including electron-transfer dynamics and mechanistic studies related to small molecule activation catalysis. Significant progress has been made in this area, but many challenges remain in terms of stability, synthetic complexity, and versatility. We report here a new anchoring strategy based on self-assembled bilayers. This strategy takes advantage of noncovalent interactions between long alkyl chains chemically bound to a metal-oxide electrode surface and long alkyl chains on the molecule being anchored. The new methodology is applicable to the heterogenization of both catalysts and chromophores as well as to the in situ "synthesis" of chromophore-catalyst assemblies on the electrode surface.


Subject(s)
Alkanes/chemistry , Coordination Complexes/chemistry , Electrochemical Techniques/methods , Catalysis , Coloring Agents/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Ruthenium/chemistry , Solar Energy
13.
Inorg Chem ; 57(9): 5486-5498, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29696969

ABSTRACT

The cobalt complexes CoIIL1(PF6)2 (1; L1 = 2,6-bis[2-(2,2'-bipyridin-6'-yl)ethyl]pyridine) and CoIIL2(PF6)2 (2; L2 = 2,6-bis[2-(4-methoxy-2,2'-bipyridin-6'-yl)ethyl]pyridine) were synthesized and used for photocatalytic CO2 reduction in acetonitrile. X-ray structures of complexes 1 and 2 reveal distorted trigonal-bipyramidal geometries with all nitrogen atoms of the ligand coordinated to the Co(II) center, in contrast to the common six-coordinate cobalt complexes with pentadentate polypyridine ligands, where a monodentate solvent completes the coordination sphere. Under electrochemical conditions, the catalytic current for CO2 reduction was observed near the Co(I/0) redox couple for both complexes 1 and 2 at E1/2 = -1.77 and -1.85 V versus Ag/AgNO3 (or -1.86 and -1.94 V vs Fc+/0), respectively. Under photochemical conditions with 2 as the catalyst, [Ru(bpy)3]2+ as a photosensitizer, tri- p-tolylamine (TTA) as a reversible quencher, and triethylamine (TEA) as a sacrificial electron donor, CO and H2 were produced under visible-light irradiation, despite the endergonic reduction of Co(I) to Co(0) by the photogenerated [Ru(bpy)3]+. However, bulk electrolysis in a wet CH3CN solution resulted in the generation of formate as the major product, indicating the facile production of Co(0) and [Co-H] n+ ( n = 1 and 0) under electrochemical conditions. The one-electron-reduced complex 2 reacts with CO to produce [Co0L2(CO)] with νCO = 1894 cm-1 together with [CoIIL2]2+ through a disproportionation reaction in acetonitrile, based on the spectroscopic and electrochemical data. Electrochemistry and time-resolved UV-vis spectroscopy indicate a slow CO binding rate with the [CoIL2]+ species, consistent with density functional theory calculations with CoL1 complexes, which predict a large structural change from trigonal-bipyramidal to distorted tetragonal geometry. The reduction of CO2 is much slower than the photochemical formation of [Ru(bpy)3]+ because of the large structural changes, spin flipping in the cobalt catalytic intermediates, and an uphill reaction for the reduction to Co(0) by the photoproduced [Ru(bpy)3]+.

14.
Phys Chem Chem Phys ; 20(3): 2104-2112, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29302663

ABSTRACT

The splitting of water into molecular hydrogen and oxygen with the use of renewable solar energy is considered one of the most promising routes to yield sustainable fuel. Herein, we report the H2 evolution performance of gallium doped TiO2 photocatalysts with varying degrees of Ga dopant. The gallium(iii) ions induced significant changes in the structural, textural and electronic properties of TiO2 nanoparticles, resulting in remarkably enhanced photocatalytic activity and good stability for H2 production. Ga3+ ions can act as hole traps that enable a large number of excited electrons to migrate towards the TiO2 surface, thereby facilitating electron transfer and charge separation. Additionally, the cationic dopant and its induced defects might introduce a mid-gap state, promoting electron migration and prolonging the lifetime of charge carrier pairs. We have discovered that the optimal Ga dopant concentration was 3.125 at% and that the incorporation of platinum (0.5 wt%) as a co-catalyst further improved the H2 evolution rate up to 5722 µmol g-1 h-1. Pt not only acts as an electron sink, drastically increasing the electron/hole pair lifetime, but it also creates an intimate contact at the heterojunction between Pt and Ga-TiO2, thus improving the interfacial electron transfer process. These catalyst design strategies provide new ways of designing transition metal photocatalysts that improve green fuel production from renewable solar energy and water.

15.
Phys Chem Chem Phys ; 18(23): 15972-9, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27240884

ABSTRACT

Three-dimensional (3D) monodispersed sea urchin-like Ru-doped rutile TiO2 hierarchical architectures composed of radially aligned, densely-packed TiO2 nanorods have been successfully synthesized via an acid-hydrothermal method at low temperature without the assistance of any structure-directing agent and post annealing treatment. The addition of a minuscule concentration of ruthenium dopants remarkably catalyzes the formation of the 3D urchin structure and drives the enhanced photocatalytic H2 production under visible light irradiation, not possible on undoped and bulk rutile TiO2. Increasing ruthenium doping dosage not only increases the surface area up to 166 m(2) g(-1) but also induces enhanced photoresponse in the regime of visible and near infrared light. The doping introduces defect impurity levels, i.e. oxygen vacancy and under-coordinated Ti(3+), significantly below the conduction band of TiO2, and ruthenium species act as electron donors/acceptors that accelerate the photogenerated hole and electron transfer and efficiently suppress the rapid charge recombination, therefore improving the visible-light-driven activity.

16.
Inorg Chem ; 54(9): 4310-21, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25902004

ABSTRACT

The ability of cobalt-based transition metal complexes to catalyze electrochemical proton reduction to produce molecular hydrogen has resulted in a large number of mechanistic studies involving various cobalt complexes. While the basic mechanism of proton reduction promoted by cobalt species is well-understood, the reactivity of certain reaction intermediates, such as Co(I) and Co(III)-H, is still relatively unknown owing to their transient nature, especially in aqueous media. In this work we investigate the properties of intermediates produced during catalytic proton reduction in aqueous solutions promoted by the [(DPA-Bpy)Co(OH2)](n+) (DPA-Bpy = N,N-bis(2-pyridinylmethyl)-2,20-bipyridine-6-methanamine) complex ([Co(L)(OH2)](n+) where L is the pentadentate DPA-Bpy ligand or [Co(OH2)](n+) as a shorthand). Experimental results based on transient pulse radiolysis and laser flash photolysis methods, together with electrochemical studies and supported by density functional theory (DFT) calculations indicate that, while the water ligand is strongly coordinated to the metal center in the oxidation state 3+, one-electron reduction of the complex to form a Co(II) species results in weakening the Co-O bond. The further reduction to a Co(I) species leads to the loss of the aqua ligand and the formation of [Co(I)-VS)](+) (VS = vacant site). Interestingly, DFT calculations also predict the existence of a [Co(I)(κ(4)-L)(OH2)](+) species at least transiently, and its formation is consistent with the experimental Pourbaix diagram. Both electrochemical and kinetics results indicate that the Co(I) species must undergo some structural change prior to accepting the proton, and this transformation represents the rate-determining step (RDS) in the overall formation of [Co(III)-H](2+). We propose that this RDS may originate from the slow removal of a solvent ligand in the intermediate [Co(I)(κ(4)-L)(OH2)](+) in addition to the significant structural reorganization of the metal complex and surrounding solvent resulting in a high free energy of activation.

17.
Proc Natl Acad Sci U S A ; 109(39): 15657-62, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-22826261

ABSTRACT

We have developed a correlation between experimental and density functional theory-derived results of the hydride-donating power, or "hydricity", of various ruthenium, rhenium, and organic hydride donors. This approach utilizes the correlation between experimental hydricity values and their corresponding calculated free-energy differences between the hydride donors and their conjugate acceptors in acetonitrile, and leads to an extrapolated value of the absolute free energy of the hydride ion without the necessity to calculate it directly. We then use this correlation to predict, from density functional theory-calculated data, hydricity values of ruthenium and rhenium complexes that incorporate the pbnHH ligand-pbnHH = 1,5-dihydro-2-(2-pyridyl)-benzo[b]-1,5-naphthyridine-to model the function of NADPH. These visible light-generated, photocatalytic complexes produced by disproportionation of a protonated-photoreduced dimer of a metal-pbn complex may be valuable for use in reducing CO(2) to fuels such as methanol. The excited-state lifetime of photoexcited [Ru(bpy)(2)(pbnHH)](2+) is found to be about 70 ns, and this excited state can be reductively quenched by triethylamine or 1,4-diazabicyclo[2.2.2]octane to produce the one-electron-reduced [Ru(bpy)(2)(pbnHH)](+) species with half-life exceeding 50 µs, thus opening the door to new opportunities for hydride-transfer reactions leading to CO(2) reduction by producing a species with much increased hydricity.


Subject(s)
Biomimetic Materials/chemistry , Carbon Dioxide/chemistry , Methanol/chemical synthesis , Models, Chemical , NADP/chemistry , Photochemical Processes , Methanol/chemistry , NADP/analogs & derivatives , Oxidation-Reduction , Ruthenium/chemistry
18.
Inorg Chem ; 53(13): 6904-13, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24911180

ABSTRACT

The mononuclear ruthenium(II) complex [Ru](2+) (Ru = Ru(dpp)(pic)2, where dpp is the tetradentate 2,9-dipyrid-2'-yl-1,10-phenanthroline ligand and pic is 4-picoline) reported by Thummel's group (Inorg. Chem. 2008, 47, 1835-1848) that contains no water molecule in its primary coordination shell is evaluated as a catalyst for water oxidation in artificial photosynthesis. A detailed theoretical characterization of the energetics, thermochemistry, and spectroscopic properties of intermediates allowed us to interpret new electrochemical and spectroscopic experimental data, and propose a mechanism for the water oxidation process that involves an unprecedented sequence of seven-coordinate ruthenium complexes as intermediates. This analysis provides insights into a mechanism that generates four electrons and four protons in the solution and a gas-phase oxygen molecule at different pH values. On the basis of the calculations and corroborated substantially by experiments, the catalytic cycle goes through [(2)Ru(III)](3+) and [(2)Ru(V)(O)](3+) to [(1)Ru(IV)(OOH)](3+) then [(2)Ru(III)(···(3)O2)](3+) at pH 0, and through [(3)Ru(IV)(O)](2+), [(2)Ru(V)(O)](3+), and [(1)Ru(IV)(OO)](2+) at pH 9 before reaching the same [(2)Ru(III)(···(3)O2)](3+) species, from which the liberation of the weakly bound O2 might require an additional oxidation to form [(3)Ru(IV)(O)](2+) to initiate further cycles involving all seven-coordinate species.

19.
Phys Chem Chem Phys ; 16(24): 11976-87, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24549266

ABSTRACT

Catalytic water oxidation has been investigated using five iridium complexes as precatalysts and NaIO4 as an oxidant at various pH conditions. An increase in the activity of all complexes was observed with increasing pH. A detailed analysis of spectroscopic data together with O2-evolution experiments using Cp*Ir(6,6'-dihydroxy-2,2'-bipyridine)(OH2)(2+) as a precatalyst indicate that the high catalytic activity is closely connected with transient species (A) that exhibits an absorption band at λmax 590 nm. The formation of this active form is strongly dependent on reaction conditions, and the species was distinctly observed using a small excess of periodate. However, another species absorbing at 600 nm (B), which seems to be a less active catalyst, was also observed and was more prominent at high oxidant concentration. Dynamic light scattering analysis and transmission electron microscopy have identified species B as 120 nm nanoparticles. The ultrafiltration method has revealed that species A can be attributed to particles with size in the range of 0.5­2 nm, possibly small IrOx clusters similar to those described previously by Harriman and co-workers (J. Phys. Chem., 1991, 95, 616­621).


Subject(s)
Iridium/chemistry , Organometallic Compounds/chemistry , Water/chemistry , Catalysis , Kinetics , Oxidation-Reduction , Proton Magnetic Resonance Spectroscopy , Spectrophotometry, Ultraviolet
20.
Inorg Chem ; 52(8): 4160-72, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23541116

ABSTRACT

The kinetics and thermodynamics of the binding of several small molecules, L (L = N2, H2, D2, and C2H4), to the coordinatively unsaturated pincer-PCP rhodium(I) complexes Rh[(t)Bu2PCH2(C6H3)CH2P(t)Bu2] (1) and Rh[(t)Bu2P(CH2)2(CH)(CH2)2P(t)Bu2] (2) in organic solvents (n-heptane, toluene, THF, and cyclohexane-d12) have been investigated by a combination of kinetic flash photolysis methods, NMR equilibrium studies, and density functional theory (DFT) calculations. Using various gas mixtures and monitoring by NMR until equilibrium was established, the relative free energies of binding of N2, H2, and C2H4 in cyclohexane-d12 were found to increase in the order C2H4 < N2 < H2. Time-resolved infrared (TRIR) and UV-vis transient absorption spectroscopy revealed that 355 nm excitation of 1-L and 2-L results in the photoejection of ligand L. The subsequent mechanism of binding of L to 1 and 2 to regenerate 1-L and 2-L is determined by the structure of the PCP ligand framework and the nature of the solvent. In both cases, the primary transient is a long-lived, unsolvated species (τ = 50-800 ns, depending on L and its concentration in solution). For 2, this so-called less-reactive form (LRF) is in equilibrium with a more-reactive form (MRF), which reacts with L at diffusion-controlled rates to regenerate 2-L. These two intermediates are proposed to be different conformers of the three-coordinate (PCP)Rh fragment. For 1, a similar mechanism is proposed to occur, but the LRF to MRF step is irreversible. In addition, a parallel reaction pathway was observed that involves the direct reaction of the LRF of 1 with L, with second-order rate constants that vary by almost 3 orders of magnitude, depending on the nature of L (in n-heptane, k = 6.7 × 10(5) M(-1) s(-1) for L = C2H4; 4.0 × 10(6) M(-1) s(-1) for L = N2; 5.5 × 10(8) M(-1) s(-1) for L = H2). Experiments in the more coordinating solvent, THF, revealed the binding of THF to 1 to generate 1-THF, and its subsequent reaction with L, as a competing pathway.

SELECTION OF CITATIONS
SEARCH DETAIL