Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Mol Psychiatry ; 26(10): 5967-5976, 2021 10.
Article in English | MEDLINE | ID: mdl-32665603

ABSTRACT

Blood biomarkers have great potential to advance clinical care and accelerate trials in Alzheimer's disease (AD). Plasma phospho-tau181 (p-tau181) is a promising blood biomarker however, it is unknown if levels increase in presymptomatic AD. Therefore, we investigated the timing of p-tau181 changes using 153 blood samples from 70 individuals in a longitudinal study of familial AD (FAD). Plasma p-tau181 was measured, using an in-house single molecule array assay. We compared p-tau181 between symptomatic carriers, presymptomatic carriers, and non-carriers, adjusting for age and sex. We examined the relationship between p-tau181 and neurofilament light and estimated years to/from symptom onset (EYO), as well as years to/from actual onset in a symptomatic subgroup. In addition, we studied associations between p-tau181 and clinical severity, as well testing for differences between genetic subgroups. Twenty-four were presymptomatic carriers (mean baseline EYO -9.6 years) while 27 were non-carriers. Compared with non-carriers, plasma p-tau181 concentration was higher in both symptomatic (p < 0.001) and presymptomatic mutation carriers (p < 0.001). Plasma p-tau181 showed considerable intra-individual variability but individual values discriminated symptomatic (AUC 0.93 [95% CI 0.85-0.98]) and presymptomatic (EYO ≥ -7 years) (AUC 0.86 [95% CI 0.72-0.94]) carriers from non-carriers of the same age and sex. From a fitted model there was evidence (p = 0.050) that p-tau181 concentrations were higher in mutation carriers than non-carriers from 16 years prior to estimated symptom onset. Our finding that plasma p-tau181 concentration is increased in symptomatic and presymptomatic FAD suggests potential utility as an easily accessible biomarker of AD pathology.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Biomarkers , Cohort Studies , Humans , Longitudinal Studies , tau Proteins/genetics
2.
Brain ; 144(10): 2964-2970, 2021 11 29.
Article in English | MEDLINE | ID: mdl-33892504

ABSTRACT

In vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-ß peptides in disease pathogenesis; however, less is known about the behaviour of these mutations in vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-ß (Aß)42:38, Aß42:40 and Aß38:40 ratios between presenilin 1 (PSEN1) and amyloid precursor protein (APP) carriers. We examined the relationship between plasma and in vitro models of amyloid-ß processing and tested for associations with parental age at onset. Thirty-nine participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma amyloid-ß between genotypes: higher Aß42:38 in PSEN1 versus APP (P < 0.001) and non-carriers (P < 0.001); higher Aß38:40 in APP versus PSEN1 (P < 0.001) and non-carriers (P < 0.001); while Aß42:40 was higher in both mutation groups compared to non-carriers (both P < 0.001). Amyloid-ß profiles were reasonably consistent in plasma and cell lines. Within the PSEN1 group, models demonstrated associations between Aß42:38, Aß42:40 and Aß38:40 ratios and parental age at onset. In vivo differences in amyloid-ß processing between PSEN1 and APP carriers provide insights into disease pathophysiology, which can inform therapy development.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/genetics , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/genetics , Presenilin-1/blood , Presenilin-1/genetics , Adult , Alzheimer Disease/diagnosis , Biomarkers/blood , Cohort Studies , Cross-Sectional Studies , Female , Genotype , Humans , Induced Pluripotent Stem Cells/metabolism , Longitudinal Studies , Male , Middle Aged
4.
Alzheimers Dement ; 14(1): 43-53, 2018 01.
Article in English | MEDLINE | ID: mdl-28738187

ABSTRACT

INTRODUCTION: Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. METHODS: Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. RESULTS: Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. DISCUSSION: Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Adult , Apolipoproteins E/genetics , Atrophy/etiology , Atrophy/pathology , Brain/physiopathology , Female , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Magnetic Resonance Imaging , Male , Middle Aged , Psychiatric Status Rating Scales , Statistics, Nonparametric , Time Factors
5.
Front Med (Lausanne) ; 10: 1102510, 2023.
Article in English | MEDLINE | ID: mdl-36926317

ABSTRACT

Introduction: Visual processing deficits in Alzheimer's disease are associated with diminished functional independence. While environmental adaptations have been proposed to promote independence, recent guidance gives limited consideration to such deficits and offers conflicting recommendations for people with dementia. We evaluated the effects of clutter and color contrasts on performances of everyday actions in posterior cortical atrophy and memory-led typical Alzheimer's disease. Methods: 15 patients with posterior cortical atrophy, 11 with typical Alzheimer's disease and 16 healthy controls were asked to pick up a visible target object as part of two pilot repeated-measures investigations from a standing or seated position. Participants picked up the target within a controlled real-world setting under varying environmental conditions: with/without clutter, with/without color contrast cue and far/near target position. Task completion time was recorded using a target-mounted inertial measurement unit. Results: Across both experiments, difficulties locating a target object were apparent through patient groups taking an estimated 50-90% longer to pick up targets relative to controls. There was no evidence of effects of color contrast when locating objects from standing/seated positions and of any other environmental conditions from a standing position on completion time in any participant group. Locating objects, surrounded by five distractors rather than none, from a seated position was associated with a disproportionately greater effect on completion times in the posterior cortical atrophy group relative to the control or typical Alzheimer's disease groups. Smaller, not statistically significant but directionally consistent, ratios of relative effects were seen for two distractors compared with none. Discussion: Findings are consistent with inefficient object localization in posterior cortical atrophy relative to typical Alzheimer's disease and control groups, particularly with targets presented within reaching distance among visual clutter. Findings may carry implications for considering the adverse effects of visual clutter in developing and implementing environmental modifications to promote functional independence in Alzheimer's disease.

6.
Alzheimers Res Ther ; 15(1): 99, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231491

ABSTRACT

Cortical tau accumulation is a key pathological event that partly defines Alzheimer's disease (AD) onset and is associated with cognitive decline and future disease progression. However, an improved understanding of the timing and pattern of early tau deposition in AD and how this may be tracked in vivo is needed. Data from 59 participants involved in two longitudinal cohort studies of autosomal dominant AD (ADAD) were used to investigate whether tau PET can detect and track presymptomatic change; seven participants were symptomatic, and 52 were asymptomatic but at a 50% risk of carrying a pathogenic mutation. All had baseline flortaucipir (FTP) PET, MRI and clinical assessments; 26 individuals had more than one FTP PET scan. Standardised uptake value ratios (SUVRs) in prespecified regions of interest (ROIs) were obtained using inferior cerebellar grey matter as the reference region. We compared the changes in FTP SUVRs between presymptomatic carriers, symptomatic carriers and non-carriers, adjusting for age, sex and study site. We also investigated the relationship between regional FTP SUVRs and estimated years to/from symptom onset (EYO). Compared to both non-carriers and presymptomatic carriers, FTP SUVRs were significantly higher in symptomatic carriers in all ROIs tested (p < 0.001). There were no significant regional differences between presymptomatic carriers and non-carriers in FTP SUVRs, or their rates of change (p > 0.05), although increased FTP signal uptake was seen posteriorly in some individuals around the time of expected symptom onset. When we examined the relationship of FTP SUVR with respect to EYO, the earliest significant regional difference between mutation carriers and non-carriers was detected within the precuneus prior to estimated symptom onset in some cases. This study supports preliminary studies suggesting that presymptomatic tau tracer uptake is rare in ADAD. In cases where early uptake was seen, there was often a predilection for posterior regions (the precuneus and post-cingulate) as opposed to the medial temporal lobe, highlighting the importance of examining in vivo tau uptake beyond the confines of traditional Braak staging.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/complications , Carbolines , Cognitive Dysfunction/pathology , Longitudinal Studies , Positron-Emission Tomography/methods , tau Proteins/genetics
7.
Brain Pathol ; 32(3): e13009, 2022 05.
Article in English | MEDLINE | ID: mdl-34319632

ABSTRACT

Familial Alzheimer's disease (FAD) is caused by autosomal dominant mutations in the PSEN1, PSEN2 or APP genes, giving rise to considerable clinical and pathological heterogeneity in FAD. Here we investigate variability in clinical data and the type and distribution of Aß pathologies throughout the cortical layers of different FAD mutation cases. Brain tissue from 20 FAD cases [PSEN1 pre-codon 200 (n = 10), PSEN1 post-codon 200 (n = 6), APP (n = 4)] were investigated. Frontal cortex sections were stained immunohistochemically for Aß, and Nissl to define the cortical layers. The frequency of different amyloid-beta plaque types was graded for each cortical layer and the severity of cerebral amyloid angiopathy (CAA) was determined in cortical and leptomeningeal blood vessels. Comparisons were made between FAD mutations and APOE4 status, with associations between pathology, clinical and genetic data investigated. In this cohort, possession of an APOE4 allele was associated with increased disease duration but not with age at onset, after adjusting for mutation sub-group and sex. We found Aß pathology to be heterogeneous between cases although Aß load was highest in cortical layer 3 for all mutation groups and a higher Aß load was associated with APOE4. The PSEN1 post-codon 200 group had a higher Aß load in lower cortical layers, with a small number of this group having increased cotton wool plaque pathology in lower layers. Cotton wool plaque frequency was positively associated with the severity of CAA in the whole cohort and in the PSEN1 post-codon 200 group. Carriers of the same PSEN1 mutation can have differing patterns of Aß deposition, potentially because of differences in risk factors. Our results highlight possible influences of APOE4 genotype, and PSEN1 mutation type on Aß deposition, which may have effects on the clinical heterogeneity of FAD.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Apolipoprotein E4/genetics , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/pathology , Codon , Mutation , Plaque, Amyloid/pathology , Presenilin-1/genetics
8.
Neurology ; 99(2): e129-e141, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35410910

ABSTRACT

BACKGROUND AND OBJECTIVES: The goals of this work were to quantify the independent and interactive associations of ß-amyloid (Aß) and white matter hyperintensity volume (WMHV), a marker of presumed cerebrovascular disease (CVD), with rates of neurodegeneration and to examine the contributions of APOE ε4 and vascular risk measured at different stages of adulthood in cognitively normal members of the 1946 British Birth Cohort. METHODS: Participants underwent brain MRI and florbetapir-Aß PET as part of Insight 46, an observational population-based study. Changes in whole-brain, ventricular, and hippocampal volume were directly measured from baseline and repeat volumetric T1 MRI with the boundary shift integral. Linear regression was used to test associations with baseline Aß deposition, baseline WMHV, APOE ε4, and office-based Framingham Heart Study Cardiovascular Risk Score (FHS-CVS) and systolic blood pressure (BP) at ages 36, 53, and 69 years. RESULTS: Three hundred forty-six cognitively normal participants (mean [SD] age at baseline scan 70.5 [0.6] years; 48% female) had high-quality T1 MRI data from both time points (mean [SD] scan interval 2.4 [0.2] years). Being Aß positive at baseline was associated with 0.87-mL/y faster whole-brain atrophy (95% CI 0.03, 1.72), 0.39-mL/y greater ventricular expansion (95% CI 0.16, 0.64), and 0.016-mL/y faster hippocampal atrophy (95% CI 0.004, 0.027), while each 10-mL additional WMHV at baseline was associated with 1.07-mL/y faster whole-brain atrophy (95% CI 0.47, 1.67), 0.31-mL/y greater ventricular expansion (95% CI 0.13, 0.60), and 0.014-mL/y faster hippocampal atrophy (95% CI 0.006, 0.022). These contributions were independent, and there was no evidence that Aß and WMHV interacted in their effects. There were no independent associations of APOE ε4 with rates of neurodegeneration after adjustment for Aß status and WMHV, no clear relationships between FHS-CVS or systolic BP and rates of neurodegeneration when assessed across the whole sample, and no evidence that FHS-CVS or systolic BP acted synergistically with Aß. DISCUSSION: Aß and presumed CVD have distinct and additive effects on rates of neurodegeneration in cognitively normal elderly. These findings have implications for the use of MRI measures as biomarkers of neurodegeneration and emphasize the importance of risk management and early intervention targeting both pathways.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Aged , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apolipoprotein E4/genetics , Atrophy/pathology , Birth Cohort , Brain/pathology , Cerebrovascular Disorders/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Positron-Emission Tomography
9.
Brain Commun ; 3(4): fcab272, 2021.
Article in English | MEDLINE | ID: mdl-34859218

ABSTRACT

Pathological cerebral white matter changes in Alzheimer's disease have been shown using diffusion tensor imaging. Superficial white matter changes are relatively understudied despite their importance in cortico-cortical connections. Measuring superficial white matter degeneration using diffusion tensor imaging is challenging due to its complex organizational structure and proximity to the cortex. To overcome this, we investigated diffusion MRI changes in young-onset Alzheimer's disease using standard diffusion tensor imaging and Neurite Orientation Dispersion and Density Imaging to distinguish between disease-related changes that are degenerative (e.g. loss of myelinated fibres) and organizational (e.g. increased fibre dispersion). Twenty-nine young-onset Alzheimer's disease patients and 22 healthy controls had both single-shell and multi-shell diffusion MRI. We calculated fractional anisotropy, mean diffusivity, neurite density index, orientation dispersion index and tissue fraction (1-free water fraction). Diffusion metrics were sampled in 15 a priori regions of interest at four points along the cortical profile: cortical grey matter, grey/white boundary, superficial white matter (1 mm below grey/white boundary) and superficial/deeper white matter (2 mm below grey/white boundary). To estimate cross-sectional group differences, we used average marginal effects from linear mixed effect models of participants' diffusion metrics along the cortical profile. The superficial white matter of young-onset Alzheimer's disease individuals had lower neurite density index compared to controls in five regions (superior and inferior parietal, precuneus, entorhinal and parahippocampus) (all P < 0.05), and higher orientation dispersion index in three regions (fusiform, entorhinal and parahippocampus) (all P < 0.05). Young-onset Alzheimer's disease individuals had lower fractional anisotropy in the entorhinal and parahippocampus regions (both P < 0.05) and higher fractional anisotropy within the postcentral region (P < 0.05). Mean diffusivity was higher in the young-onset Alzheimer's disease group in the parahippocampal region (P < 0.05) and lower in the postcentral, precentral and superior temporal regions (all P < 0.05). In the overlying grey matter, disease-related changes were largely consistent with superficial white matter findings when using neurite density index and fractional anisotropy, but appeared at odds with orientation dispersion and mean diffusivity. Tissue fraction was significantly lower across all grey matter regions in young-onset Alzheimer's disease individuals (all P < 0.001) but group differences reduced in magnitude and coverage when moving towards the superficial white matter. These results show that microstructural changes occur within superficial white matter and along the cortical profile in individuals with young-onset Alzheimer's disease. Lower neurite density and higher orientation dispersion suggests underlying fibres undergo neurodegeneration and organizational changes, two effects previously indiscernible using standard diffusion tensor metrics in superficial white matter.

10.
Alzheimers Dement (N Y) ; 6(1): e12077, 2020.
Article in English | MEDLINE | ID: mdl-33043109

ABSTRACT

INTRODUCTION: Clinical reports describe patients with Alzheimer's disease (AD) exhibiting atypical adaptive walking responses to the visual environment; however, there is limited empirical investigation of such behaviors or factors modulating their expression. We aim to evaluate effects of lighting-based interventions and clinical presentation (visual- vs memory-led) on walking function in participants with posterior cortical atrophy (PCA) and typical AD (tAD). METHODS: Participants with PCA (n = 10), tAD (n = 9), and healthy controls (n = 12) walked to visible target destinations under different lighting conditions within two pilot repeated-measures design investigations (Experiment 1: 32 trials per participant; Experiment 2: 36 trials per participant). Participants walked to destinations with the floorpath interrupted by shadows varying in spatial extent (Experiment 1: no, medium, high shadow) or with different localized parts of the environment illuminated (Experiment 2: target, middle, or distractor illuminated). The primary study outcome for both experimental tasks was completion time; secondary kinematic outcomes were proportions of steps identified as outliers (Experiment 1) and walking path directness (Experiment 2). RESULTS: In Experiment 1, PCA participants overall demonstrated modest reductions in time taken to reach destinations when walking to destinations uninterrupted by shadows compared to high shadow conditions (7.1% reduction [95% confidence interval 2.5, 11.5; P = .003]). Experiment 2 found no evidence of differences in task performance for different localized lighting conditions in PCA participants overall. Neither experiment found evidence of differences in task performance between conditions in tAD or control participants overall. Completion time in both patient groups was longer relative to controls, and longer in PCA relative to tAD groups. DISCUSSION: Findings represent a quantitative characterization of a clinical phenomenon involving patients misperceiving shadows, implicating dementia-related cortico-visual impairments. Results contribute to evidence-based design guidelines for dementia-friendly environments.

11.
Alzheimers Res Ther ; 12(1): 112, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32943095

ABSTRACT

BACKGROUND: There is increasing interest in improving understanding of the timing and nature of early neurodegeneration in Alzheimer's disease (AD) and developing methods to measure this in vivo. Autosomal dominant familial Alzheimer's disease (FAD) provides the opportunity for investigation of presymptomatic change. We assessed early microstructural breakdown of cortical grey matter in FAD with diffusion-weighted MRI. METHODS: Diffusion-weighted and T1-weighed MRI were acquired in 38 FAD mutation carriers (17 symptomatic, 21 presymptomatic) and 39 controls. Mean diffusivity (MD) was calculated for six cortical regions previously identified as being particularly vulnerable to FAD-related neurodegeneration. Linear regression compared MD between symptomatic and presymptomatic carriers and controls, adjusting for age and sex. Spearman coefficients assessed associations between cortical MD and cortical thickness. Spearman coefficients also assessed associations between cortical MD and estimated years to/from onset (EYO). Across mutation carriers, linear regression assessed associations between MD and EYO, adjusting for cortical thickness. RESULTS: Compared with controls, cortical MD was higher in symptomatic mutation carriers (mean ± SD CDR = 0.88 ± 0.39) for all six regions (p < 0.001). In late presymptomatic carriers (within 8.1 years of predicted symptom onset), MD was higher in the precuneus (p = 0.04) and inferior parietal cortex (p = 0.003) compared with controls. Across all presymptomatic carriers, MD in the precuneus correlated with EYO (p = 0.04). Across all mutation carriers, there was strong evidence (p < 0.001) of association between MD and cortical thickness in all regions except entorhinal cortex. After adjusting for cortical thickness, there remained an association (p < 0.05) in mutation carriers between MD and EYO in all regions except entorhinal cortex. CONCLUSIONS: Cortical MD measurement detects microstructural breakdown in presymptomatic FAD and correlates with proximity to symptom onset independently of cortical thickness. Cortical MD may thus be a feasible biomarker of early AD-related neurodegeneration, offering additional/complementary information to conventional MRI measures.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Diffusion Magnetic Resonance Imaging , Heterozygote , Humans , Magnetic Resonance Imaging
12.
Healthc Technol Lett ; 6(2): 42-47, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31119037

ABSTRACT

People with Alzheimer's disease (AD) have characteristic problems navigating everyday environments. While patients may exhibit abnormal gait parameters, adaptive gait irregularities when navigating environments are little explored or understood. The aim of this study was to assess adaptive locomotor responses of AD subjects in a complex environment requiring spatial navigation. A controlled environment of three corridors was set up: straight (I), U-shaped (U) and dog-leg (S). Participants were asked to walk along corridors as part of a counterbalanced repeated-measures design. Three groups were studied: 11 people with posterior cortical atrophy (PCA), 10 with typical Alzheimer's disease (tAD) and 13 controls. Spatio-temporal gait parameters and position within the corridors were monitored with shoe-mounted inertial measurement units (IMUs). Hesitant steps were identified from statistical analysis of the distribution of step time data. Walking paths were generated from position data calculated by double integration of IMU acceleration. People with PCA and tAD had similar gait characteristics, having shorter steps and longer step times than controls. Hesitant steps tended to be clustered within certain regions of the walking paths. IMUs enabled identification of key gait characteristics in this clinical population (step time, length and step hesitancy) and environmental conditions (route complexity) modifying their expression.

13.
Alzheimers Res Ther ; 11(1): 19, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30786919

ABSTRACT

BACKGROUND: To investigate how serum neurofilament light (NfL) concentration changes through the course of disease in familial Alzheimer's disease (FAD) and to assess when NfL concentration first increases. METHODS: NfL was measured using an ultrasensitive immunoassay in 117 serum samples from 61 individuals from families with PSEN1 or APP mutations in a longitudinal study (mean ± SD = 1.9 ± 1.1 visits/patient; inter-visit interval = 1.8 ± 1.1 years). The relationship between NfL concentration and estimated years to/from symptom onset (EYO) was modelled using linear regression, including all time points and robust standard errors to allow for repeated measurements, adjusting for age at visit and sex. Also, for the 27 participants who became symptomatic (during or before the study), NfL concentration was also modelled against known actual years to/from onset (AYO). RESULTS: There were 15 non-carriers and 46 mutation carriers (21 symptomatic; 25 presymptomatic). NfL concentration was increased (p = 0.045) in mutation carriers compared with non-carriers 15 years prior to expected symptom onset, increasing progressively thereafter. There was a significant inter- and intra-individual variability in the longitudinal pattern of change. Modelling NfL for the 27 mutation carriers with known AYO also showed a progressive increase over time. CONCLUSIONS: There is evidence that serum NfL is increased more than a decade before the onset of clinical symptoms in FAD and rises thereafter. While there is variability in change over time, both within and between individuals, and more work is needed to understand the sources of this variability, serum NfL remains a promising, accessible biomarker of early neurodegeneration in presymptomatic Alzheimer's disease.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/genetics , Neurofilament Proteins/blood , Neurofilament Proteins/genetics , Prodromal Symptoms , Adult , Alzheimer Disease/diagnosis , Biomarkers/blood , Female , Heterozygote , Humans , Longitudinal Studies , Male , Middle Aged
14.
Ann Clin Transl Neurol ; 5(2): 162-171, 2018 02.
Article in English | MEDLINE | ID: mdl-29468177

ABSTRACT

Objective: To assess whether high levels of cerebrospinal fluid neurogranin are found in atypical as well as typical Alzheimer's disease. Methods: Immunoassays were used to measure cerebrospinal fluid neurogranin in 114 participants including healthy controls (n = 27), biomarker-proven amnestic Alzheimer's disease (n = 68), and the atypical visual variant of Alzheimer's (n = 19) according to international criteria. CSF total-tau, Aß42, and neurofilament light concentrations were investigated using commercially available assays. All affected individuals had T1-weighted volumetric MR images available for analysis of whole and regional brain volumes. Associations between neurogranin, brain volumes, total-tau, Aß42, and neurofilament light were assessed. Results: Median cerebrospinal fluid neurogranin concentrations were higher in typical and atypical Alzheimer's compared to controls (P < 0.001 and P = 0.005). Both neurogranin and total-tau concentrations, but not neurofilament light and Aß42, were higher in typical Alzheimer's compared to atypical patients (P = 0.004 and P = 0.03). There were significant differences in the left hippocampus and right and left superior parietal lobules in atypical patients, which were larger (P = 0.03) and smaller (P = 0.001 and P < 0.001), respectively, compared to typical patients. We found no evidence of associations between neurogranin and brain volumes but a strong association with total-tau (P < 0.001) and a weaker association with neurofilament light (P = 0.005). Interpretation: These results show significant differences in neurogranin and total-tau between typical and atypical patients, which may relate to factors other than disease topography. The differential relationships between neurogranin, total-tau and neurofilament light in the Alzheimer's variants, provide evidence for mechanistically distinct and coupled markers of neurodegeneration.

15.
Ann Clin Transl Neurol ; 5(6): 697-709, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29928653

ABSTRACT

OBJECTIVE: Deficits in spatial navigation are characteristic and disabling features of typical Alzheimer's disease (tAD) and posterior cortical atrophy (PCA). Visual cues have been proposed to mitigate such deficits; however, there is currently little empirical evidence for their use. METHODS: The effect of visual cues on visually guided navigation was assessed within a simplified real-world setting in individuals with tAD (n = 10), PCA (n = 8), and healthy controls (n = 12). In a repeated-measures design comprising 36 trials, participants walked to a visible target destination (an open door within a built environment), with or without the presence of an obstacle. Contrast and motion-based cues were evaluated; both aimed to facilitate performance by applying perceptual changes to target destinations without carrying explicit information. The primary outcome was completion time; secondary outcomes were measures of fixation position and walking path directness during consecutive task phases, determined using mobile eyetracking and motion capture methods. RESULTS: Results illustrate marked deficits in patients' navigational ability, with patient groups taking an estimated two to three times longer to reach target destinations than controls and exhibiting tortuous walking paths. There were no significant differences between tAD and PCA task performance. Overall, patients took less time to reach target destinations under cue conditions (contrast-cue: 11.8%; 95% CI: [2.5, 20.3]) and were more likely initially to fixate on targets. INTERPRETATION: The study evaluated navigation to destinations within a real-world environment. There is evidence that introducing perceptual changes to the environment may improve patients' navigational ability.

16.
Alzheimers Res Ther ; 10(1): 32, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29558979

ABSTRACT

BACKGROUND: Cerebrospinal fluid (CSF) biomarkers are increasingly being used to support a diagnosis of Alzheimer's disease (AD). Their clinical utility for differentiating AD from non-AD neurodegenerative dementias, such as dementia with Lewy bodies (DLB) or frontotemporal dementia (FTD), is less well established. We aimed to determine the diagnostic utility of an extended panel of CSF biomarkers to differentiate AD from a range of other neurodegenerative dementias. METHODS: We used immunoassays to measure conventional CSF markers of amyloid and tau pathology (amyloid beta (Aß)1-42, total tau (T-tau), and phosphorylated tau (P-tau)) as well as amyloid processing (AßX-38, AßX-40, AßX-42, soluble amyloid precursor protein (sAPP)α, and sAPPß), large fibre axonal degeneration (neurofilament light chain (NFL)), and neuroinflammation (YKL-40) in 245 patients with a variety of dementias and 30 controls. Patients fulfilled consensus criteria for AD (n = 156), DLB (n = 20), behavioural variant frontotemporal dementia (bvFTD; n = 45), progressive non-fluent aphasia (PNFA; n = 17), and semantic dementia (SD; n = 7); approximately 10% were pathology/genetically confirmed (n = 26). Global tests based on generalised least squares regression were used to determine differences between groups. Non-parametric receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses were used to quantify how well each biomarker discriminated AD from each of the other diagnostic groups (or combinations of groups). CSF cut-points for the major biomarkers found to have diagnostic utility were validated using an independent cohort which included causes of AD (n = 104), DLB (n = 5), bvFTD (n = 12), PNFA (n = 3), SD (n = 9), and controls (n = 10). RESULTS: There were significant global differences in Aß1-42, T-tau, T-tau/Aß1-42 ratio, P-tau-181, NFL, AßX-42, AßX-42/X-40 ratio, APPα, and APPß between groups. At a fixed sensitivity of 85%, AßX-42/X-40 could differentiate AD from controls, bvFTD, and SD with specificities of 93%, 85%, and 100%, respectively; for T-tau/Aß1-42 these specificities were 83%, 70%, and 86%. AßX-42/X-40 had similar or higher specificity than Aß1-42. No biomarker or ratio could differentiate AD from DLB or PNFA with specificity > 50%. Similar sensitivities and specificities were found in the independent validation cohort for differentiating AD and other dementias and in a pathology/genetically confirmed sub-cohort. CONCLUSIONS: CSF AßX-42/X-40 and T-tau/Aß1-42 ratios have utility in distinguishing AD from controls, bvFTD, and SD. None of the biomarkers tested had good specificity at distinguishing AD from DLB or PNFA.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Biomarkers/cerebrospinal fluid , Diagnosis, Differential , Aged , Amyloid beta-Peptides/cerebrospinal fluid , Cohort Studies , Female , Humans , Male , Middle Aged , Phosphorylation , ROC Curve , Sensitivity and Specificity , tau Proteins/cerebrospinal fluid
17.
Neurology ; 89(21): 2167-2175, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29070659

ABSTRACT

OBJECTIVES: To investigate whether serum neurofilament light (NfL) concentration is increased in familial Alzheimer disease (FAD), both pre and post symptom onset, and whether it is associated with markers of disease stage and severity. METHODS: We recruited 48 individuals from families with PSEN1 or APP mutations to a cross-sectional study: 18 had symptomatic Alzheimer disease (AD) and 30 were asymptomatic but at 50% risk of carrying a mutation. Serum NfL was measured using an ultrasensitive immunoassay on the single molecule array (Simoa) platform. Cognitive testing and MRI were performed; 33 participants had serial MRI, allowing calculation of atrophy rates. Genetic testing established mutation status. A generalized least squares regression model was used to compare serum NfL among symptomatic mutation carriers, presymptomatic carriers, and noncarriers, adjusting for age and sex. Spearman coefficients assessed associations between serum NfL and (1) estimated years to/from symptom onset (EYO), (2) cognitive measures, and (3) MRI measures of atrophy. RESULTS: Nineteen of the asymptomatic participants were mutation carriers (mean EYO -9.6); 11 were noncarriers. Compared with noncarriers, serum NfL concentration was higher in both symptomatic (p < 0.0001) and presymptomatic mutation carriers (p = 0.007). Across all mutation carriers, serum NfL correlated with EYO (ρ = 0.81, p < 0.0001) and multiple cognitive and imaging measures, including Mini-Mental State Examination (ρ = -0.62, p = 0.0001), Clinical Dementia Rating Scale sum of boxes (ρ = 0.79, p < 0.0001), baseline brain volume (ρ = -0.62, p = 0.0002), and whole-brain atrophy rate (ρ = 0.53, p = 0.01). CONCLUSIONS: Serum NfL concentration is increased in FAD prior to symptom onset and correlates with measures of disease stage and severity. Serum NfL may thus be a feasible biomarker of early AD-related neurodegeneration.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/physiopathology , Neurodegenerative Diseases/blood , Neurofilament Proteins/blood , Adult , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Cross-Sectional Studies , Disease Progression , Family Health , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mental Status Schedule , Middle Aged , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/etiology , Neuropsychological Tests , Presenilin-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL