Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters

Publication year range
1.
J Med Genet ; 61(3): 232-238, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-37813462

ABSTRACT

BACKGROUND: The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. METHODS: Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. RESULTS: Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. CONCLUSIONS: We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways.


Subject(s)
Connective Tissue Diseases , Ehlers-Danlos Syndrome , Child , Humans , Genome-Wide Association Study , Longitudinal Studies , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics
2.
Clin Exp Dermatol ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767179

ABSTRACT

The Ehlers-Danlos Syndromes (EDS) are a heterogenous group of heritable connective tissue disorders, characterised by joint hypermobility, skin hyperextensibility and generalised tissue fragility. In all types of EDS skin wound healing is impaired to a variable degree. Additional support through wound management plans may help to improve these outcomes, however, there is paucity of evidence regarding clinical management of skin fragility and wounds in EDS. This paper aims to review current evidence and provide recommendations for management of skin wounds in EDS types. Preventative measures to avoid skin injury are strongly recommended, including avoidance of high impact sport and use of appropriate protection such as shin guards. Bruising is common and some types of EDS are associated with haematoma formation with management including compression bandages and consideration of pharmacological therapy. Skin fragility and tears should be managed with a focus on protection of remaining tissue, avoidance of wound tension and low adherence dressings to avoid further injury. This paper provides clear recommendations to address skin management for this group of patients. It highlights the lack of good quality published data to support treatment decisions.

3.
J Am Acad Dermatol ; 89(3): 551-559, 2023 09.
Article in English | MEDLINE | ID: mdl-36764582

ABSTRACT

BACKGROUND: The Ehlers-Danlos syndromes (EDSs) comprise a group of connective tissue disorders that manifest with skin hyperextensibility, easy bruising, joint hypermobility and fragility of skin, soft tissues, and some organs. A correct assessment of cutaneous features along with the use of adjunct technologies can improve diagnostic accuracy. OBJECTIVES: To systematically review the cutaneous features and adjunct investigations of EDS. METHODS: A search of PubMed and Web of Science for EDS-related cutaneous features and additional investigations was undertaken from publication of the 2017 International Classification of EDS until January 15, 2022. RESULTS: One-hundred-and-forty studies involved 839 patients with EDS. The EDS female-to-male ratio was 1.36:1 (PĀ <Ā .001). A high prevalence of skin hyperextensibility, bruising, and soft skin were noted. Most patients with vascular Ehlers-Danlos syndrome showed venous visibility, skin fragility, and acrogeria. Classical EDS showed subcutaneous spheroids and molluscoid pseudotumours. In patients that underwent skin biopsies, only 30.3% and 71.4% showed features suggestive of EDS using light microscopy and transmission electron microscopy, respectively. LIMITATIONS: Retrospective study and small cases numbers for some EDS-subtypes. CONCLUSIONS: An accurate clinical diagnosis increases the chances of a molecular diagnosis, particularly for rarer EDS subtypes, whilst decreasing the need for genetic testing where there is a low clinical suspicion for a monogenic EDS-subtype.


Subject(s)
Connective Tissue Diseases , Ehlers-Danlos Syndrome , Humans , Female , Male , Retrospective Studies , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/pathology
4.
J Med Genet ; 57(11): 769-776, 2020 11.
Article in English | MEDLINE | ID: mdl-32467296

ABSTRACT

BACKGROUND: The Ehlers-Danlos syndromes (EDS) are a group of connective tissue disorders with several recognised types. Patients with a type of EDS have connective tissue abnormalities resulting in a varying degree of joint hypermobility, skin and vascular fragility and generalised tissue friability. Classical EDS (cEDS) typically occurs as a result of dominant pathogenic variants in COL5A1 or COL5A2. The cardinal features of cEDS are hyperextensible skin, atrophic scarring and joint hypermobility. Arterial complications are more characteristically a feature of vascular EDS although individual cases of arterial events in cEDS have been reported. METHODS: A cohort of 154 patients with a clinical diagnosis of cEDS from the UK was analysed. RESULTS: Seven patients (4.5%) with a diagnosis of cEDS (four pathogenic, one likely pathogenic and two variants of uncertain significance in COL5A1) who had experienced arterial complications were identified. Arterial complications mostly involved medium-sized vessels and also two abdominal aortic aneurysms. No unique clinical features were identified in this group of patients. CONCLUSION: There is a possible increased risk of arterial complications in patients with cEDS, although not well-defined. Clinicians need to be aware of this possibility when presented with a patient with an arterial complication and features of cEDS. Long-term management in families with cEDS and a vascular complication should be individually tailored to the patient's history and their family's history of vascular events.


Subject(s)
Collagen Type V/genetics , Connective Tissue Diseases/genetics , Ehlers-Danlos Syndrome/genetics , Adult , Aged , Connective Tissue Diseases/pathology , Female , Genetic Predisposition to Disease , Humans , Joint Instability/genetics , Joint Instability/pathology , Male , Middle Aged , Mutation/genetics , Skin Abnormalities/genetics , Skin Abnormalities/pathology
5.
Genet Med ; 22(10): 1576-1582, 2020 10.
Article in English | MEDLINE | ID: mdl-32572181

ABSTRACT

PURPOSE: Currently, 31 patients with classical-like EDS (clEDS) due to tenascin-X deficiency have been reported in the literature. We report on the clinical and molecular characteristics of 20 additional patients with clEDS to expand knowledge and to enable improved management of this rare genetic disorder. METHODS: Patients diagnosed with clEDS by the national EDS service in the UK (n = 21) and abroad (n = 1) were asked for consent for publication of their clinical and molecular data. RESULTS: Of 22 patients, 20 consented. All patients had typical features of clEDS: joint hypermobility, easy bruising, and skin hyperextensibility without atrophic scars. Importantly, 3/20 patients experienced gastrointestinal complications consisting of small or large bowel ruptures and one esophageal rupture. Other notable observations included two separate occurrences of spontaneous compartment syndrome, suspicion of nonaccidental injury due to significant bruising, and significant clinical variability regarding the debilitating effect of joint dislocations. CONCLUSIONS: We propose a predisposition to tissue fragility, particularly of the gastrointestinal tract in patients with clEDS. As such, clinical and molecular confirmation of this diagnosis is essential. It is recommended to follow up these patients closely to understand the natural history to develop better recommendations for management.


Subject(s)
Ehlers-Danlos Syndrome , Joint Instability , Skin Abnormalities , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Extracellular Matrix , Humans , Joint Instability/diagnosis , Joint Instability/genetics
6.
Am J Med Genet A ; 182(5): 994-1007, 2020 05.
Article in English | MEDLINE | ID: mdl-32091183

ABSTRACT

Arthrochalasia Ehlers-Danlos syndrome (aEDS) is a rare autosomal dominant connective tissue disorder that is characterized by congenital bilateral hip dislocations, severe generalized joint hypermobility, recurrent joint (sub)luxations, and skin hyperextensibility. To date, 42 patients with aEDS have been published. We report 12 patients with aEDS from 10 families with 6 unpublished individuals and follow-up data on 6 adult patients. The clinical features are largely comparable with patients reported in the literature. Most (n = 10) patients had variants leading to (partial) loss of exon 6 of the COL1A1 or COL1A2 genes. One patient did not have a previously reported likely pathogenic COL1A1 variant. Data regarding management were retrieved. Hip surgery was performed in 5/12 patients and 3/12 patients underwent spinal surgery. As much as 4/12 patients were wheelchair-bound or unable to walk unaided. Fractures were present in 9/12 individuals with 1 patient requiring bisphosphonate treatment. Echocardiograms were performed in 10 patients and 2 individuals showed an abnormality likely unrelated to aEDS. One patient gave birth to two affected children and went through preterm labor requiring medication but had no additional complications. Of the eight adults in our cohort, the majority entered a career. Our data point toward a genotype-phenotype relationship with individuals with aEDS due to pathogenic COL1A1 variants causing complete or partial loss of exon 6 being more severely affected regarding musculoskeletal features. There is a significant lack of knowledge with regard to management of aEDS, particularly in adulthood. As such, systematic follow-up and multidisciplinary treatment is essential.


Subject(s)
Collagen Type I/genetics , Ehlers-Danlos Syndrome/genetics , Hip Dislocation, Congenital/genetics , Adolescent , Adult , Child , Child, Preschool , Collagen Type I, alpha 1 Chain , Ehlers-Danlos Syndrome/epidemiology , Ehlers-Danlos Syndrome/physiopathology , Exons/genetics , Female , Genetic Predisposition to Disease , Hip Dislocation, Congenital/epidemiology , Hip Dislocation, Congenital/physiopathology , Humans , Male , Middle Aged , Mutation/genetics , Pedigree , Phenotype , Skin Abnormalities/genetics , Skin Abnormalities/physiopathology , Young Adult
7.
Acta Derm Venereol ; 100(7): adv00092, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32147746

ABSTRACT

Ehlers-Danlos syndromes (EDS) are a group of inherited connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and variable tissue fragility. However, there are limited published data on the dental manifestations of EDS. This review systematically assessed the spectrum of published dental anomalies in various types of EDS. Twenty-four individual case reports/series and 3 longer case-control studies, reporting on a total of 84 individuals with a clinical diagnosis of EDS, were included in the data analysis. The main dental features listed in classical EDS were pulp calcification and localized root hypoplasia. Common dental abnormalities observed in vascular EDS were pulp shape modifications (52.2%), exceeding root length (34.8%), and molar root fusion (47.8%). Dentinogenesis imperfecta is a consistent finding in osteogenesis imperfecta/EDS overlap syndrome. Data on dental manifestations in other types of EDS are both rare and generally inconclusive.


Subject(s)
Dental Pulp Calcification/etiology , Ehlers-Danlos Syndrome/complications , Tooth Abnormalities/etiology , Tooth Diseases/congenital , Tooth Root/abnormalities , Humans , Tooth Abnormalities/pathology , Tooth Diseases/etiology
8.
Am J Hum Genet ; 99(5): 1005-1014, 2016 Nov 03.
Article in English | MEDLINE | ID: mdl-27745832

ABSTRACT

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.


Subject(s)
Complement C1r/genetics , Complement C1s/genetics , Ehlers-Danlos Syndrome/genetics , Gene Deletion , Mutation, Missense , Periodontitis/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Mapping , Chromosomes, Human, Pair 12/genetics , Ehlers-Danlos Syndrome/diagnosis , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Exome , Female , Genetic Loci , Humans , Male , Pedigree , Periodontitis/diagnosis , Protein Conformation , Young Adult
9.
Genet Med ; 21(9): 2081-2091, 2019 09.
Article in English | MEDLINE | ID: mdl-30837697

ABSTRACT

PURPOSE: The Ehlers-Danlos syndromes (EDS) are a group of rare inherited connective tissue disorders. Vascular EDS (vEDS) is caused by pathogenic variants in COL3A1, most frequently glycine substitutions. We describe the phenotype of the largest series of vEDS patients with glutamic acid to lysine substitutions (Glu>Lys) in COL3A1, which were all previously considered to be variants of unknown significance. METHODS: Clinical and molecular data for seven families with three different Glu>Lys substitutions in COL3A1 were analyzed. RESULTS: These Glu>Lys variants were reclassified from variants of unknown significance to either pathogenic or likely pathogenic in accordance with American College of Medical Genetics and Genomics guidelines. All individuals with these atypical variants exhibited skin hyperextensibility as seen in individuals with classical EDS and classical-like EDS and evidence of tissue fragility as seen in individuals with vEDS. CONCLUSION: The clinical data demonstrate the overlap between the different EDS subtypes and underline the importance of next-generation sequencing gene panel analysis. The three different Glu>Lys variants point toward a new variant type in COL3A1 causative of vEDS, which has consistent clinical features. This is important knowledge for COL3A1 variant interpretation. Further follow-up data are required to establish the severity of tissue fragility complications compared with patients with other recognized molecular causes of vEDS.


Subject(s)
Collagen Type III/genetics , Ehlers-Danlos Syndrome/genetics , Skin Abnormalities/genetics , Adult , Aged , Ehlers-Danlos Syndrome/classification , Ehlers-Danlos Syndrome/pathology , Female , Glutamic Acid/genetics , Glycine/genetics , High-Throughput Nucleotide Sequencing , Humans , Lysine/genetics , Male , Middle Aged , Mutation , Pedigree , Phenotype , Skin Abnormalities/pathology
10.
Genet Med ; 20(1): 42-54, 2018 01.
Article in English | MEDLINE | ID: mdl-28617417

ABSTRACT

PurposeIn 2012 we reported in six individuals a clinical condition almost indistinguishable from PLOD1-kyphoscoliotic Ehlers-Danlos syndrome (PLOD1-kEDS), caused by biallelic mutations in FKBP14, and characterized by progressive kyphoscoliosis, myopathy, and hearing loss in addition to connective tissue abnormalities such as joint hypermobility and hyperelastic skin. FKBP14 is an ER-resident protein belonging to the family of FK506-binding peptidyl-prolyl cis-trans isomerases (PPIases); it catalyzes the folding of type III collagen and interacts with type III, type VI, and type X collagens. Only nine affected individuals have been reported to date.MethodsWe report on a cohort of 17 individuals with FKBP14-kEDS and the follow-up of three previously reported patients, and provide an extensive overview of the disorder and its natural history based on clinical, biochemical, and molecular genetics data.ResultsBased on the frequency of the clinical features of 23 patients from the present and previous cohorts, we define major and minor features of FKBP14-kEDS. We show that myopathy is confirmed by histology and muscle imaging only in some patients, and that hearing impairment is predominantly sensorineural and may not be present in all individuals.ConclusionOur data further support the extensive clinical overlap with PLOD1-kEDS and show that vascular complications are rare manifestations of FKBP14-kEDS.


Subject(s)
Alleles , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Genetic Association Studies , Mutation , Peptidylprolyl Isomerase/genetics , Phenotype , Child , Child, Preschool , Chromosome Mapping , Cohort Studies , DNA Mutational Analysis , Female , Humans , Magnetic Resonance Angiography , Magnetic Resonance Imaging , Male
11.
Am J Med Genet C Semin Med Genet ; 175(1): 8-26, 2017 03.
Article in English | MEDLINE | ID: mdl-28306229

ABSTRACT

The Ehlers-Danlos syndromes (EDS) are a clinically and genetically heterogeneous group of heritable connective tissue disorders (HCTDs) characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. Over the past two decades, the Villefranche Nosology, which delineated six subtypes, has been widely used as the standard for clinical diagnosis of EDS. For most of these subtypes, mutations had been identified in collagen-encoding genes, or in genes encoding collagen-modifying enzymes. Since its publication in 1998, a whole spectrum of novel EDS subtypes has been described, and mutations have been identified in an array of novel genes. The International EDS Consortium proposes a revised EDS classification, which recognizes 13 subtypes. For each of the subtypes, we propose a set of clinical criteria that are suggestive for the diagnosis. However, in view of the vast genetic heterogeneity and phenotypic variability of the EDS subtypes, and the clinical overlap between EDS subtypes, but also with other HCTDs, the definite diagnosis of all EDS subtypes, except for the hypermobile type, relies on molecular confirmation with identification of (a) causative genetic variant(s). We also revised the clinical criteria for hypermobile EDS in order to allow for a better distinction from other joint hypermobility disorders. To satisfy research needs, we also propose a pathogenetic scheme, that regroups EDS subtypes for which the causative proteins function within the same pathway. We hope that the revised International EDS Classification will serve as a new standard for the diagnosis of EDS and will provide a framework for future research purposes. Ā© 2017 Wiley Periodicals, Inc.


Subject(s)
Ehlers-Danlos Syndrome/classification , Practice Guidelines as Topic , Collagen/genetics , Connective Tissue Diseases/genetics , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Genetic Heterogeneity , Humans , Mutation
12.
Genet Med ; 18(11): 1119-1127, 2016 11.
Article in English | MEDLINE | ID: mdl-27011056

ABSTRACT

PURPOSE: Ehlers-Danlos syndrome (EDS) comprises a group of overlapping hereditary disorders of connective tissue with significant morbidity and mortality, including major vascular complications. We sought to identify the diagnostic utility of a next-generation sequencing (NGS) panel in a mixed EDS cohort. METHODS: We developed and applied PCR-based NGS assays for targeted, unbiased sequencing of 12 collagen and aortopathy genes to a cohort of 177 unrelated EDS patients. Variants were scored blind to previous genetic testing and then compared with results of previous Sanger sequencing. RESULTS: Twenty-eight pathogenic variants in COL5A1/2, COL3A1, FBN1, and COL1A1 and four likely pathogenic variants in COL1A1, TGFBR1/2, and SMAD3 were identified by the NGS assays. These included all previously detected single-nucleotide and other short pathogenic variants in these genes, and seven newly detected pathogenic or likely pathogenic variants leading to clinically significant diagnostic revisions. Twenty-two variants of uncertain significance were identified, seven of which were in aortopathy genes and required clinical follow-up. CONCLUSION: Unbiased NGS-based sequencing made new molecular diagnoses outside the expected EDS genotype-phenotype relationship and identified previously undetected clinically actionable variants in aortopathy susceptibility genes. These data may be of value in guiding future clinical pathways for genetic diagnosis in EDS.Genet Med 18 11, 1119-1127.


Subject(s)
Collagen/genetics , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , High-Throughput Nucleotide Sequencing/methods , Adolescent , Adult , Aged , Child , Child, Preschool , Ehlers-Danlos Syndrome/physiopathology , Female , Genetic Testing , Genotype , Humans , Male , Middle Aged , Mutation/genetics , Pathology, Molecular/methods , Phenotype , Protein Serine-Threonine Kinases/genetics , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/genetics , Young Adult
13.
Am J Med Genet A ; 167A(8): 1763-72, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25846194

ABSTRACT

Vascular Ehlers-Danlos syndrome (vEDS) is a heritable disorder of connective tissue caused by pathological variants in the COL3A1 gene, which encodes the α1 chain of type III collagen. Type III collagen is a major component of skin, arterial walls, and the gastrointestinal tract. Collagen III protein deficiency manifests as an increased risk of rupture, perforation, and dissection of these structures. The most disruptive gene variants affect the collagen helix via glycine substitutions or splice donor site mutations. The C-propeptide region of COL3A1 includes exons 49-52 and has a crucial role in initiating the C-terminal assembly of procollagen monomers in the early stages of collagen biosynthesis. Nineteen COL3A1 variants have previously been reported in these exons, of which four were associated with a severe vEDS phenotype. We identified two novel C-propeptide missense variants; p.Pro1440Leu, p.Arg1432Leu, and a non-stop mutation, c.4400A > T, p. (*1467Leuext*45). These variants produce variable phenotypes ranging from obvious acrogeria to classical or hypermobile EDS. A previously reported variant p.Lys1313Arg is of unknown clinical significance but likely benign, based on this study. Assigning disease pathogenicity remains complex, clinical phenotyping and crystal structure evidence being crucial. We briefly compare reported phenotypes for patients with missense variants in the C-propeptide domain for other human collagen disorders including COL1A1 and COL1A2 (osteogenesis imperfecta).


Subject(s)
Collagen Type III/genetics , Peptide Fragments/genetics , Adult , Collagen Type III/chemistry , Crystallography, X-Ray , Ehlers-Danlos Syndrome/genetics , Exons , Female , Humans , Male , Peptide Fragments/chemistry , Protein Conformation
14.
Am J Med Genet A ; 164A(2): 386-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24311407

ABSTRACT

Osteogenesis imperfecta (OI) type I is a hereditary disorder of connective tissue (HDCT) characterized by blue or gray sclerae, variable short stature, dentinogenesis imperfecta, hearing loss, and recurrent fractures from infancy. We present four examples of OI type I complicated by valvular heart disease and associated with tissue fragility. The diagnosis of a type I collagen disorder was confirmed by abnormal COL1A1 or COL1A2 gene sequencing. One patient was investigated with electrophoresis of collagens from cultured skin fibroblasts, showing structurally abnormal collagen type I, skin biopsy showed unusual histology and abnormal collagen fibril ultra-structure at electron microscopy. The combined clinical, surgical, histological, ultra-structural, and molecular genetic data suggest the type I collagen defect as contributory to cardiac valvular disease. The degree of tissue fragility experienced at cardiac surgery in these individuals, also reported in a small number of similar case reports, suggests that patients with OI type I need careful pre-operative assessment and consideration of the risks and benefits of cardiac surgery.


Subject(s)
Bone and Bones/pathology , Collagen Type I/genetics , Heart Valve Diseases/etiology , Heart Valve Diseases/pathology , Mutation , Osteogenesis Imperfecta/complications , Osteogenesis Imperfecta/genetics , Adult , Child , Female , Heart Valve Diseases/diagnosis , Heart Ventricles/pathology , Humans , Joint Instability/diagnosis , Joint Instability/etiology , Male , Middle Aged , Osteogenesis Imperfecta/diagnosis , Pedigree , Sclera/abnormalities , Skin/pathology , Skin/ultrastructure
15.
Am J Med Genet A ; 161A(5): 1122-5, 2013 May.
Article in English | MEDLINE | ID: mdl-23495203

ABSTRACT

Dermatosparaxis Ehlers-Danlos syndrome (or EDS VIIC), a rare autosomal recessive connective tissue disorder, is characterized by extreme skin fragility, premature rupture of membranes in pregnancy, and spontaneous rupture of internal organs. Here we report a second patient with EDS VIIC presenting with congenital skull fractures and skin lacerations at birth, complications which may occur more frequently than previously thought in this condition. We also discuss the role of prenatal diagnosis in the management of a subsequent normal pregnancy.


Subject(s)
ADAM Proteins/genetics , Delivery, Obstetric/adverse effects , Ehlers-Danlos Syndrome/diagnosis , Prenatal Diagnosis/methods , Procollagen N-Endopeptidase/genetics , Rupture, Spontaneous/complications , Skull Fractures/complications , ADAMTS4 Protein , Ehlers-Danlos Syndrome/complications , Ehlers-Danlos Syndrome/genetics , Female , Humans , Infant, Newborn , Microscopy, Electron, Transmission , Pregnancy
16.
Skin Health Dis ; 3(1): e140, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36751332

ABSTRACT

The Ehlers-Danlos syndromes (EDS) comprise a group of inherited connective tissue disorders presenting with features of skin hyperextensibility, joint hypermobility, abnormal scarring and fragility of skin, blood vessels and some organs. The disease is generally diagnosed through the cluster of clinical features, though the addition of genetic analysis is the gold standard for diagnosis of most subtypes. All subtypes display skin manifestations, which are essential to the accurate clinical diagnosis of the condition. Furthermore, cutaneous features can be the first and/or only presenting feature in some cases of EDS and thus understanding these signs is vital for diagnosis. This review focuses on particular cutaneous features of each EDS subtype and their clinical importance. Provision of a specific diagnosis is important for management, prognosis and genetic counselling, often for family members beyond the individual.

17.
Genes (Basel) ; 10(10)2019 09 27.
Article in English | MEDLINE | ID: mdl-31569816

ABSTRACT

Two probands are reported with pathogenic and likely pathogenic COL5A1 variants (frameshift and splice site) in whom no collagen flowers have been identified with transmission electron microscopy (TEM). One proband fulfils the clinical criteria for classical Ehlers-Danlos syndrome (cEDS) while the other does not and presents with a vascular complication. This case report highlights the significant intrafamilial variability within the cEDS phenotype and demonstrates that patients with pathogenic COL5A1 variants can have an absence of collagen flowers on TEM skin biopsy analysis. This has not been previously reported in the literature and is important when evaluating the significance of a TEM result in patients with clinically suspected cEDS and underscores the relevance of molecular analysis.


Subject(s)
Collagen Type V/genetics , Dermis/ultrastructure , Ehlers-Danlos Syndrome/genetics , Adult , Codon, Nonsense , Ehlers-Danlos Syndrome/pathology , Female , Frameshift Mutation , Humans , Middle Aged , Pedigree
18.
J Invest Dermatol ; 124(6): 1193-9, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15955094

ABSTRACT

Cutis laxa (CL) is a heterogeneous group of genetic and acquired disorders with at least two autosomal dominant forms caused by mutations in the elastin and fibulin-5 genes, respectively. To define the molecular basis of CL in patients negative for point mutations in the elastin gene, metabolic labeling and immunoprecipitation experiments were used to study the synthesis of elastin in dermal fibroblasts. In addition to the normal 68 kDa tropoelastin (TE) protein, an abnormal, 120 kDa polypeptide was detected in the proband and her affected daughter in a CL family characterized by hernias and unusually severe and early-onset pulmonary disease including bronchiectasis and pulmonary emphysema. Mutational and gene expression studies established that affected individuals in this family carried a partial tandem duplication in the elastin locus. Immunoprecipitation experiments showed that the mutant TE was partially secreted and partially retained intracellularly. A polyclonal antibody raised against a unique peptide in the mutant TE molecule showed both intracellular and matrix staining. We conclude that elastin mutations can cause CL associated with a severe pulmonary phenotype. Synthesis of abnormal TE may interfere with elastic fiber function through a dominant-negative or a gain of function mechanism.


Subject(s)
Cutis Laxa/genetics , Extracellular Matrix/metabolism , Genes, Dominant , Lung Diseases/genetics , Mutation , Tropoelastin/genetics , Tropoelastin/metabolism , Adult , Amino Acid Sequence , Female , Humans , Lung Diseases/diagnostic imaging , Lung Diseases/physiopathology , Molecular Sequence Data , Pedigree , Radiography, Thoracic , Severity of Illness Index , Tandem Repeat Sequences
19.
Micron ; 36(7-8): 696-702, 2005.
Article in English | MEDLINE | ID: mdl-16182545

ABSTRACT

Osteogenesis Imperfecta (OI) is a heterogeneous, inherited bone disorder usually resulting from a defect in collagen synthesis or function. The Sillence classification recognises four OI subtypes of which type III is the severe, progressively deforming form. Here, we report distinctive ultrastructural abnormalities of bone osteoid collagen fibrils from three patients with OI type III and compared with normal controls. Collagen biochemistry of these patients showed normal alpha1(I) and alpha2(I) chains, despite the structurally abnormal collagen fibrils. The expected lamellar organisation of normal osteoid was absent in the bone biopsies of these patients. In addition their collagen fibrils had frayed edges and no periodicity was observed in most of these fibrils. These collagen fibrils were also flower like, twisted, spiralled and sparsely distributed throughout a very thick osteoid with patchy mineralisation. These structurally abnormal collagens may not be able to provide the nucleating and scaffolding sites for normal mineralisation and may lead to the bone fragility observed in OI.


Subject(s)
Bone and Bones/ultrastructure , Collagen/ultrastructure , Osteogenesis Imperfecta/pathology , Bone Density , Bone and Bones/physiopathology , Calcification, Physiologic , Child , Child, Preschool , Collagen/biosynthesis , Collagen/chemistry , Female , Haversian System/physiopathology , Haversian System/ultrastructure , Humans , Infant , Male , Microscopy, Electron, Transmission , Osteocytes/ultrastructure , Osteogenesis Imperfecta/genetics , Pedigree
20.
J Rheumatol ; 33(10): 2091-6, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17014025

ABSTRACT

We describe a 19-year-old male, with a family history of both systemic lupus erythematosus and Marfan syndrome, who had a history of bruising easily and skin lesions since childhood. He had a spontaneous colonic perforation at the age of 16 years, followed 3 years later by sudden development of bilateral renal infarctions and hypertension, which on angiography were found to be due to dissection of both renal arteries. Transient elevations of 3 types of antiphospholipid antibodies (aPL) were detected. Skin biopsy showed typical elastosis perforans serpiginosa. The history together with the generalized connective tissue phenotype, histology, and angiographic features combined to establish a diagnosis of vascular Ehlers-Danlos syndrome, type IV; the body habitus resembled the phenotypically-related condition of Marfan syndrome. The coincidental finding of transient aPL elevations combined to make this a difficult diagnostic and clinical management problem.


Subject(s)
Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/pathology , Adult , Angiography , Antibodies, Antiphospholipid/metabolism , C-Reactive Protein/metabolism , Diagnosis, Differential , Ehlers-Danlos Syndrome/metabolism , Humans , Kidney/blood supply , Male , Marfan Syndrome/diagnosis , Skin/pathology , von Willebrand Factor/immunology , von Willebrand Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL