Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Immunol ; 21(7): 790-801, 2020 07.
Article in English | MEDLINE | ID: mdl-32424361

ABSTRACT

Plasmodium parasite-specific antibodies are critical for protection against malaria, yet the development of long-lived and effective humoral immunity against Plasmodium takes many years and multiple rounds of infection and cure. Here, we report that the rapid development of short-lived plasmablasts during experimental malaria unexpectedly hindered parasite control by impeding germinal center responses. Metabolic hyperactivity of plasmablasts resulted in nutrient deprivation of the germinal center reaction, limiting the generation of memory B cell and long-lived plasma cell responses. Therapeutic administration of a single amino acid to experimentally infected mice was sufficient to overcome the metabolic constraints imposed by plasmablasts and enhanced parasite clearance and the formation of protective humoral immune memory responses. Thus, our studies not only challenge the current model describing the role and function of blood-stage Plasmodium-induced plasmablasts but they also reveal new targets and strategies to improve anti-Plasmodium humoral immunity.


Subject(s)
Immunity, Humoral , Malaria/immunology , Plasma Cells/metabolism , Plasmodium falciparum/immunology , Adolescent , Adult , Amino Acids/administration & dosage , Amino Acids/metabolism , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antibodies, Protozoan/metabolism , Antimalarials/administration & dosage , DNA, Protozoan/isolation & purification , Disease Models, Animal , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Host-Parasite Interactions/immunology , Humans , Malaria/blood , Malaria/drug therapy , Malaria/parasitology , Mice , Mice, Transgenic , Middle Aged , Nutrients/metabolism , Plasma Cells/immunology , Plasma Cells/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Proof of Concept Study , Young Adult
2.
PLoS Pathog ; 17(2): e1009288, 2021 02.
Article in English | MEDLINE | ID: mdl-33529242

ABSTRACT

Immunity against malaria depends on germinal center (GC)-derived antibody responses that are orchestrated by T follicular helper (TFH) cells. Emerging data show that the regulatory cytokine IL-10 plays an essential role in promoting GC B cell responses during both experimental malaria and virus infections. Here we investigated the cellular source and temporal role of IL-10, and whether IL-10 additionally signals to CD4 T-cells to support anti-Plasmodium humoral immunity. Distinct from reports of virus infection, we found that IL-10 was expressed by conventional, Foxp3-negative effector CD4 T cells and functioned in a B cell-intrinsic manner only during the first 96 hours of Plasmodium infection to support humoral immunity. The critical functions of IL-10 manifested only before the orchestration of GC responses and were primarily localized outside of B cell follicles. Mechanistically, our studies showed that the rapid and transient provision of IL-10 promoted B cell expression of anti-apoptotic factors, MHC class II, CD83, and cell-cell adhesion proteins that are essential for B cell survival and interaction with CD4 T cells. Together, our data reveal temporal features and mechanisms by which IL-10 critically supports humoral immunity during blood-stage Plasmodium infection, information that may be useful for developing new strategies designed to lessen the burden of malaria.


Subject(s)
Antibody Formation/immunology , Antimalarials/immunology , CD4-Positive T-Lymphocytes/immunology , Interleukin-10/metabolism , Lymphocyte Activation/immunology , Malaria/immunology , Plasmodium yoelii/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Malaria/metabolism , Malaria/parasitology , Mice , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism
3.
Infect Immun ; 90(4): e0007322, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35377172

ABSTRACT

Group 3 innate lymphocytes (ILC3s) are rare immune cells localized in mucosal tissues, especially the gastrointestinal (GI) tract. Despite their rarity, they are a major source of the cytokine interleukin-22 (IL-22), which protects the GI epithelium during inflammation and infection. Although ILC3s have been demonstrated to be important for defense against Clostridioides difficile infection, the exact mechanisms through which they sense productive infection and become activated to produce IL-22 remain poorly understood. In this study, we identified a novel mechanism of ILC3 activation after exposure to C. difficile. Toxin B (TcdB) from C. difficile directly induced production of IL-22 in ILC3s, and this induction was dependent on the glucosyltransferase activity of the toxin, which inhibits small GTPases. Pharmacological inhibition of the small GTPase Cdc42 also enhanced IL-22 production in ILC3s, indicating that Cdc42 is a negative regulator of ILC3 activation. Further gene expression analysis revealed that treatment with TcdB modulated the expression of several inflammation-related genes in ILC3s. These findings demonstrate that C. difficile toxin-mediated inhibition of Cdc42 leads to the activation of ILC3s, providing evidence for how these cells are recruited into the immune response against the pathobiont.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Clostridium Infections , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Humans , Immunity, Innate , Inflammation/metabolism , Lymphocytes
4.
J Immunol ; 201(4): 1267-1274, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29980608

ABSTRACT

Glucocorticoids (GCs) are commonly prescribed to patients with a variety of inflammatory disorders, including inflammatory bowel disease (IBD). GCs mediate their immunomodulatory effects through many different mechanisms and target multiple signaling pathways. The GC dexamethasone downmodulates innate and adaptive immune cell activation. IBD is the manifestation of a dysregulated immune response involving many different immune cells. Group 3 innate lymphocytes (ILC3s) have critical roles in mucosal inflammation. ILC3s secrete high levels of the cytokine IL-22, promoting epithelial proliferation, antimicrobial peptides, and mucins. In this study, we examined the effects of dexamethasone on IL-22 production by ILC3s. We found that dexamethasone suppressed IL-23-mediated IL-22 production in human and mouse ILC3s. This was mediated in part through dexamethasone modulation of the NF-κB pathway. Inhibition of NF-κB signaling with a small molecule inhibitor also downmodulated IL-23- and IL-1ß-mediated IL-22 production in ILC3s. These findings implicate NF-κB as a regulator of IL-22 in ILC3s and likely have repercussions on GC treatment of IBD patients.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology , Interleukins/biosynthesis , Lymphocytes/drug effects , Lymphocytes/immunology , Animals , Glucocorticoids/pharmacology , Humans , Mice , NF-kappa B/drug effects , NF-kappa B/immunology , Interleukin-22
5.
J Immunol ; 198(2): 617-622, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27940658

ABSTRACT

IL-10 is a pleiotropic cytokine expressed during malaria, a disease characterized by short-lived, parasite-specific Ab responses. The role of IL-10 in regulating B cell responses during malaria is not known. In this study we report that IL-10 is essential for anti-Plasmodium humoral immunity. We identify that germinal center (GC) B cell reactions, isotype-switched Ab responses, parasite control, and host survival require B cell-intrinsic IL-10 signaling. IL-10 also indirectly supports humoral immunity by suppressing excessive IFN-γ, which induces T-bet expression in B cells. Genetic ablation of either IFN-γ signaling or T-bet expression in B cells substantially enhanced GC B cell responses and anti-Plasmodium Ab production. Together, our data show that B cell-intrinsic IL-10 enhances whereas B cell-intrinsic IFN-γ and T-bet suppress GC B cell responses and anti-Plasmodium humoral immunity. These data identify critical immunoregulatory circuits in B cells that may be targeted to promote long-lived humoral immunity and resistance to malaria.


Subject(s)
Antibodies, Protozoan/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Interleukin-10/immunology , Malaria/immunology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Immunity, Humoral/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Plasmodium yoelii
6.
PLoS Pathog ; 12(10): e1005945, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27732671

ABSTRACT

CD4 T cell-dependent antibody responses are essential for limiting Plasmodium parasite replication and the severity of malaria; however, the factors that regulate humoral immunity during highly inflammatory, Th1-biased systemic infections are poorly understood. Using genetic and biochemical approaches, we show that Plasmodium infection-induced type I interferons limit T follicular helper accumulation and constrain anti-malarial humoral immunity. Mechanistically we show that CD4 T cell-intrinsic type I interferon signaling induces T-bet and Blimp-1 expression, thereby promoting T regulatory 1 responses. We further show that the secreted effector cytokines of T regulatory 1 cells, IL-10 and IFN-γ, collaborate to restrict T follicular helper accumulation, limit parasite-specific antibody responses, and diminish parasite control. This circuit of interferon-mediated Blimp-1 induction is also operational during chronic virus infection and can occur independently of IL-2 signaling. Thus, type I interferon-mediated induction of Blimp-1 and subsequent expansion of T regulatory 1 cells represent generalizable features of systemic, inflammatory Th1-biased viral and parasitic infections that are associated with suppression of humoral immunity.


Subject(s)
Immunity, Humoral/immunology , Interferon Type I/immunology , Malaria/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Mice, Inbred C57BL
7.
Cell Rep ; 42(8): 112861, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37523264

ABSTRACT

Clostridioides difficile produces toxins that damage the colonic epithelium, causing colitis. Variation in disease severity is poorly understood and has been attributed to host factors and virulence differences between C. difficile strains. We test 23 epidemic ST1 C. difficile clinical isolates for their virulence in mice. All isolates encode a complete Tcd pathogenicity locus and achieve similar colonization densities. However, disease severity varies from lethal to avirulent infections. Genomic analysis of avirulent isolates reveals a 69-bp deletion in the cdtR gene, which encodes a response regulator for binary toxin expression. Deleting the 69-bp sequence in virulent R20291 strain renders it avirulent in mice with reduced toxin gene transcription. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile isolates without reducing colonization and persistence. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.


Subject(s)
Clostridioides difficile , Colitis , Animals , Mice , Virulence/genetics , Clostridioides difficile/genetics , Clostridioides/metabolism , Genomics , Colitis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
8.
bioRxiv ; 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36711955

ABSTRACT

Clostridioides difficile (C. difficile) , a leading cause of nosocomial infection, produces toxins that damage the colonic epithelium and results in colitis that varies from mild to fulminant. Variation in disease severity is poorly understood and has been attributed to host factors (age, immune competence and intestinal microbiome composition) and/or virulence differences between C. difficile strains, with some, such as the epidemic BI/NAP1/027 (MLST1) strain, being associated with greater virulence. We tested 23 MLST1(ST1) C. difficile clinical isolates for virulence in antibiotic-treated C57BL/6 mice. All isolates encoded a complete Tcd pathogenicity locus and achieved similar colonization densities in mice. Disease severity varied, however, with 5 isolates causing lethal infections, 16 isolates causing a range of moderate infections and 2 isolates resulting in no detectable disease. The avirulent ST1 isolates did not cause disease in highly susceptible Myd88 -/- or germ-free mice. Genomic analysis of the avirulent isolates revealed a 69 base-pair deletion in the N-terminus of the cdtR gene, which encodes a response regulator for binary toxin (CDT) expression. Genetic deletion of the 69 base-pair cdtR sequence in the highly virulent ST1 R20291 C. difficile strain rendered it avirulent and reduced toxin gene transcription in cecal contents. Our study demonstrates that a natural deletion within cdtR attenuates virulence in the epidemic ST1 C. difficile strain without reducing colonization and persistence in the gut. Distinguishing strains on the basis of cdtR may enhance the specificity of diagnostic tests for C. difficile colitis.

9.
J Exp Med ; 218(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33830176

ABSTRACT

Antimalarial antibody responses are essential for mediating the clearance of Plasmodium parasite-infected RBCs from infected hosts. However, the rapid appearance of large numbers of plasmablasts in Plasmodium-infected hosts can suppress the development and function of durable humoral immunity. Here, we identify that the formation of plasmablast populations in Plasmodium-infected mice is mechanistically linked to both hemolysis-induced exposure of phosphatidylserine on damaged RBCs and inflammatory cues. We also show that virus and Trypanosoma infections known to trigger hemolytic anemia and high-grade inflammation also induce exuberant plasmablast responses. The induction of hemolysis or administration of RBC membrane ghosts increases plasmablast differentiation. The phosphatidylserine receptor Axl is critical for optimal plasmablast formation, and blocking phosphatidylserine limits plasmablast expansions and reduces Plasmodium parasite burden in vivo. Our findings support that strategies aimed at modulating polyclonal B cell activation and phosphatidylserine exposure may improve immune responses against Plasmodium parasites and potentially other infectious diseases that are associated with anemia.


Subject(s)
Cell Differentiation/immunology , Hemolysis/immunology , Phosphatidylserines/immunology , Plasma Cells/immunology , Animals , Antibodies, Protozoan/immunology , Antimalarials/immunology , B-Lymphocytes/immunology , B-Lymphocytes/parasitology , Cells, Cultured , Erythrocytes/immunology , Erythrocytes/parasitology , Humans , Immunity, Humoral/immunology , Malaria/immunology , Malaria/parasitology , Mice , Mice, Inbred C57BL , Plasma Cells/parasitology , Plasmodium yoelii/immunology
SELECTION OF CITATIONS
SEARCH DETAIL