Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters

Country/Region as subject
Publication year range
1.
FASEB J ; 35(5): e21540, 2021 05.
Article in English | MEDLINE | ID: mdl-33817838

ABSTRACT

Compared to conventional antisera strategies, monoclonal antibodies (mAbs) represent an alternative and safer way to treat botulism, a fatal flaccid paralysis due to botulinum neurotoxins (BoNTs). In addition, mAbs offer the advantage to be produced in a reproducible manner. We previously identified a unique and potent mouse mAb (TA12) targeting BoNT/A1 with high affinity and neutralizing activity. In this study, we characterized the molecular basis of TA12 neutralization by combining Hydrogen/Deuterium eXchange Mass Spectrometry (HDX-MS) with site-directed mutagenesis and functional studies. We found that TA12 recognizes a conformational epitope located at the interface between the HCN and HCC subdomains of the BoNT/A1 receptor-binding domain (HC ). The TA12-binding interface shares common structural features with the ciA-C2 VHH epitope and lies on the face opposite recognized by ciA-C2- and the CR1/CR2-neutralizing mAbs. The single substitution of N1006 was sufficient to affect TA12 binding to HC confirming the position of the epitope. We further uncovered that the TA12 epitope overlaps with the BoNT/A1-binding site for both the neuronal cell surface receptor synaptic vesicle glycoprotein 2 isoform C (SV2C) and the GT1b ganglioside. Hence, TA12 potently blocks the entry of BoNT/A1 into neurons by interfering simultaneously with the binding of SV2C and to a lower extent GT1b. Our study reveals the unique neutralization mechanism of TA12 and emphasizes on the potential of using single mAbs for the treatment of botulism type A.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Botulinum Toxins, Type A/immunology , Epitopes/immunology , Gangliosides/metabolism , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism , Neuromuscular Agents/immunology , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/metabolism , Botulinum Toxins, Type A/metabolism , Mice , Neuromuscular Agents/metabolism , Protein Conformation
2.
Eur Biophys J ; 51(1): 15-27, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34854958

ABSTRACT

Clostridium perfringens is a potent producer of a variety of toxins. Well studied from these are five toxins (alpha, Beta (CPB), epsilon, iota and CPE) that are produced by seven toxinotype strains (A-G) of C. perfringens. Besides these toxins, C. perfringens produces also another toxin that causes necrotizing enterocolitis in piglets. This toxin termed consensus Beta2 toxin (cCPB2) has a molecular mass of 27,620 Da and shows only little homology to CPB and no one to the other toxins of C. perfringens. Its primary action on cells remained unknown to date. cCPB2 was heterogeneously expressed as fusion protein with GST in Escherichia coli and purified to homogeneity. Although cCPB2 does not exhibit the typical structure of beta-stranded pore-forming proteins and contains no indication for the presence of amphipathic alpha-helices we could demonstrate that cCPB2 is a pore-forming component with an extremely high activity in lipid bilayers. The channels have a single-channel conductance of about 700 pS in 1 M KCl and are highly cation-selective as judged from selectivity measurements in the presence of salt gradients. The high cation selectivity is caused by the presence of net negative charges in or near the channel that allowed an estimate of the channel size being about 1.4 nm wide. Our measurements suggest that the primary effect of cCPB2 is the formation of cation-selective channels followed by necrotic enteritis in humans and animals. We searched in databases for homologs of cCPB2 and constructed a cladogram representing the phylogenetic relationship to the next relatives of cCPB2.


Subject(s)
Clostridium perfringens , Lipid Bilayers , Animals , Cations , Humans , Phylogeny , Swine
3.
Food Microbiol ; 106: 104055, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35690448

ABSTRACT

Group I Clostridium botulinum and Clostridium sporogenes are physiologically and genetically closely related. Both are widely distributed in the environment and can cause foodborne botulism. In this work, a physiological study was conducted with 37 isolates from spoiled canned food and five referenced strains of C. sporogenes (three isolates) and Group I C. botulinum (two isolates). Growth limits of vegetative cells were established as a function of pH and NaCl concentration in PYG modified medium (PYGm) at 30 °C for 48 days. The heat resistance of the spores was studied for 2 min and 10 min at 102 °C and 110 °C. This physiological study (pH, NaCl growth limits and heat resistance) allowed the selection of 14 isolates of C. sporogenes (twelve isolates) and Group I C. botulinum (two isolates) representative of the diversity found. This panel of 14 selected isolates (11 isolated from spoiled canned food and three reference strains), were whole genome sequenced, but no association of physiological and genetic characteristics could be detected. Finally, we studied the ability of spores to germinate and grow from 5 isolates (four C. sporogenes and one Group I C. botulinum), under stress conditions generated by pH and NaCl following a low intensity heat treatment. The accumulation of these 3 stresses creates synergies that will strongly reduce the probability of spore growth in pH and salt conditions where they usually proliferate. The effect is progressive as the conditions become drastic: the number of decimal reduction observed increases translating a probability of growth which decreases. This study provides a better understanding of the behaviour of C. sporogenes and Group I C. botulinum isolates and shows how the combination of pH, NaCl and heat treatment can help prevent or minimise foodborne botulism outbreaks.


Subject(s)
Botulism , Clostridium botulinum , Clostridium , Clostridium botulinum/genetics , Food Microbiology , Hot Temperature , Humans , Hydrogen-Ion Concentration , Sodium Chloride/pharmacology , Spores, Bacterial
4.
FASEB J ; 34(5): 6244-6261, 2020 05.
Article in English | MEDLINE | ID: mdl-32190927

ABSTRACT

The human pathogenic bacterium Clostridioides difficile produces two exotoxins TcdA and TcdB, which inactivate Rho GTPases thereby causing C. difficile-associated diseases (CDAD) including life-threatening pseudomembranous colitis. Hypervirulent strains produce additionally the binary actin ADP-ribosylating toxin CDT. These strains are hallmarked by more severe forms of CDAD and increased frequency and severity. Once in the cytosol, the toxins act as enzymes resulting in the typical clinical symptoms. Therefore, targeting and inactivation of the released toxins are of peculiar interest. Prompted by earlier findings that human α-defensin-1 neutralizes TcdB, we investigated the effects of the defensin on all three C. difficile toxins. Inhibition of TcdA, TcdB, and CDT was demonstrated by analyzing toxin-induced changes in cell morphology, substrate modification, and decrease in transepithelial electrical resistance. Application of α-defensin-1 protected cells and human intestinal organoids from the cytotoxic effects of TcdA, TcdB, CDT, and their combination which is attributed to a direct interaction between the toxins and α-defensin-1. In mice, the application of α-defensin-1 reduced the TcdA-induced damage of intestinal loops in vivo. In conclusion, human α-defensin-1 is a specific and potent inhibitor of the C. difficile toxins and a promising agent to develop novel therapeutic options against C. difficile infections.


Subject(s)
ADP Ribose Transferases/toxicity , Anti-Infective Agents/metabolism , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Enterotoxins/toxicity , Intestinal Mucosa/drug effects , Organoids/drug effects , Peptide Fragments/metabolism , alpha-Defensins/metabolism , ADP Ribose Transferases/metabolism , Animals , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Enterotoxins/metabolism , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice , Organoids/metabolism , Organoids/pathology
5.
Cell Microbiol ; 22(7): e13213, 2020 07.
Article in English | MEDLINE | ID: mdl-32353188

ABSTRACT

Numerous bacterial toxins exert their activity by inactivating or modulating a specific intracellular host target. For this purpose, these toxins have developed efficient strategies to overcome the different host cell defences including specific binding to cell surface, internalisation, passage through the endosome or plasma membrane, exploiting intracellular trafficking and addressing to intracellular targets. Several intracellularly active toxins deliver an active domain into the cytosol that interacts with a target localised to the inner face of the plasma membrane. Thus, the large clostridial glucosylating toxins (LCGTs) target Rho/Ras-GTPases, certain virulence factors of Gram negative bacteria, Rho-GTPases, while Pasteurella multocida toxin (PMT) targets trimeric G-proteins. Others such as botulinum neurotoxins and tetanus neurotoxin have their substrate on synaptic vesicle membrane. LCGTs, PMT, and certain virulence factors from Vibrio sp. show a particular structure constituted of a four-helix bundle membrane (4HBM) protruding from the catalytic site that specifically binds to the membrane phospholipids and then trap the catalytic domain at the proximity of the membrane anchored substrate. Structural and functional analysis indicate that the 4HBM tip of the Clostridium sordellii lethal toxin (TcsL) from the LCGT family contain two loops forming a cavity that mediates the binding to phospholipids and more specifically to phosphatidylserine.


Subject(s)
Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Cell Membrane/drug effects , Cytoplasm/microbiology , Animals , Bacterial Proteins , Botulinum Toxins , Catalytic Domain , Cell Membrane/metabolism , Cytoplasm/metabolism , Humans , Legionella pneumophila , Metalloendopeptidases , Neurotoxins , Phosphatidic Acids , Phosphatidylserines/metabolism , Tetanus Toxin , Virulence Factors/metabolism , rho GTP-Binding Proteins/metabolism
6.
FASEB J ; 33(4): 5755-5771, 2019 04.
Article in English | MEDLINE | ID: mdl-30699302

ABSTRACT

The antibiotic bacitracin (Bac) inhibits cell wall synthesis of gram-positive bacteria. Here, we discovered a totally different activity of Bac: the neutralization of bacterial exotoxins. Bac prevented intoxication of mammalian cells with the binary enterotoxins Clostridium botulinum C2, C. perfringens ι, C. difficile transferase (CDT), and Bacillus anthracis lethal toxin. The transport (B) subunits of these toxins deliver their respective enzyme (A) subunits into cells. Following endocytosis, the B subunits form pores in membranes of endosomes, which mediate translocation of the A subunits into the cytosol. Bac inhibited formation of such B pores in lipid bilayers in vitro and in living cells, thereby preventing translocation of the A subunit into the cytosol. Bac preserved the epithelial integrity of toxin-treated CaCo-2 monolayers, a model for the human gut epithelium. In conclusion, Bac should be discussed as a therapeutic option against infections with medically relevant toxin-producing bacteria, including C. difficile and B. anthracis, because it inhibits bacterial growth and neutralizes the secreted toxins.-Schnell, L., Felix, I., Müller, B., Sadi, M., von Bank, F., Papatheodorou, P., Popoff, M. R., Aktories, K., Waltenberger, E., Benz, R., Weichbrodt, C., Fauler, M., Frick, M., Barth, H. Revisiting an old antibiotic: bacitracin neutralizes binary bacterial toxins and protects cells from intoxication.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacitracin/pharmacology , Bacterial Toxins/metabolism , Protective Agents/pharmacology , Animals , Antigens, Bacterial/metabolism , Bacillus anthracis/drug effects , Biological Transport/drug effects , Caco-2 Cells , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorocebus aethiops , Clostridioides difficile/drug effects , Cytosol/drug effects , Cytosol/metabolism , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Exotoxins/metabolism , HeLa Cells , Humans , Lipid Bilayers/metabolism , Protein Transport/drug effects , Vero Cells
9.
Mult Scler ; 25(5): 653-660, 2019 04.
Article in English | MEDLINE | ID: mdl-29681209

ABSTRACT

BACKGROUND: It was recently reported that, using Western blotting, some multiple sclerosis (MS) patients in the United States had antibodies against epsilon toxin (Etx) from Clostridium perfringens, suggesting that the toxin may play a role in the disease. OBJECTIVE: We investigated for serum antibodies against Etx in UK patients with clinically definite multiple sclerosis (CDMS) or presenting with clinically isolated syndrome (CIS) or optic neuritis (ON) and in age- and gender-matched controls. METHODS: We tested sera from CDMS, CIS or ON patients or controls by Western blotting. We also tested CDMS sera for reactivity with linear overlapping peptides spanning the amino acid sequence (Pepscan) of Etx. RESULTS: Using Western blotting, 24% of sera in the combined CDMS, CIS and ON groups ( n = 125) reacted with Etx. In the control group ( n = 125), 10% of the samples reacted. Using Pepscan, 33% of sera tested reacted with at least one peptide, whereas in the control group only 16% of sera reacted. Out of 61 samples, 21 (43%) were positive to one or other testing methodology. Three samples were positive by Western blotting and Pepscan. CONCLUSION: Our results broadly support the previous findings and the role of Etx in the aetiology of MS warrants further investigation.


Subject(s)
Bacterial Toxins/toxicity , Clostridium perfringens/pathogenicity , Multiple Sclerosis/etiology , Animals , CHO Cells , Cricetulus , Humans
10.
Curr Top Microbiol Immunol ; 406: 39-78, 2017.
Article in English | MEDLINE | ID: mdl-28879524

ABSTRACT

Clostridial neurotoxins, botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT), are potent toxins, which are responsible for severe neurological diseases in man and animals. BoNTs induce a flaccid paralysis (botulism) by inhibiting acetylcholine release at the neuromuscular junctions, whereas TeNT causes a spastic paralysis (tetanus) by blocking the neurotransmitter release (glycine, GABA) in inhibitory interneurons within the central nervous system. Clostridial neurotoxins recognize specific receptor(s) on the target neuronal cells and enter via a receptor-mediated endocytosis. They transit through an acidic compartment which allows the translocation of the catalytic chain into the cytosol, a prerequisite step for the intracellular activity of the neurotoxins. TeNT migrates to the central nervous system by using a motor neuron as transport cell. TeNT enters a neutral pH compartment and undergoes a retrograde axonal transport to the spinal cord or brain, where the whole undissociated toxin is delivered and interacts with target neurons. Botulism most often results from ingestion of food contaminated with BoNT. Thus, BoNT passes through the intestinal epithelial barrier mainly via a transcytotic mechanism and then diffuses or is transported to the neuromuscular junctions by the lymph or blood circulation. Indeed, clostridial neurotoxins are specific neurotoxins which transit through a transport cell to gain access to the target neuron, and use distinct trafficking pathways in both cell types.


Subject(s)
Botulinum Toxins/metabolism , Endocytosis , Neurotoxins/metabolism , Tetanus Toxin/metabolism , Animals , Biological Transport , Botulism/metabolism , Humans
11.
Cell Microbiol ; 19(8)2017 08.
Article in English | MEDLINE | ID: mdl-28296078

ABSTRACT

Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis by inhibiting the release of acetylcholine at the neuromuscular junctions. BoNT type B (BoNT/B) most often induces mild forms of botulism with predominant dysautonomic symptoms. In food borne botulism and botulism by intestinal colonisation such as infant botulism, which are the most frequent naturally acquired forms of botulism, the digestive tract is the main entry route of BoNTs into the organism. We previously showed that BoNT/B translocates through mouse intestinal barrier by an endocytosis-dependent mechanism and subsequently targets neuronal cells, mainly cholinergic neurons, in the intestinal mucosa and musculosa. Here, we investigated the entry pathway of BoNT/B using fluorescent C-terminal domain of the heavy chain (HcB), which is involved in the binding to specific receptor(s) and entry process into target cells. While the combination of gangliosides GD1a /GD1b /GT1b and synaptotagmin I and to a greater extent synaptotagmin II constitutes the functional HcB receptor on NG108-15 neuronal cells, HcB only uses the gangliosides GD1a /GD1b /GT1b to efficiently bind to m-ICcl2 intestinal cells. HcB enters both cell types by a dynamin-dependent endocytosis, which is efficiently prevented by Dynasore, a dynamin inhibitor, and reaches a common early endosomal compartment labeled by early endosome antigen (EEA1). In contrast to neuronal cells, HcB uses a Cdc42-dependent pathway to enter intestinal cells. Then, HcB is transported to late endosomes in neuronal cells, whereas it exploits a nonacidified pathway from apical to basal lateral side of m-ICcl2 cells supporting a transcytotic route in epithelial intestinal cells.


Subject(s)
Botulinum Toxins, Type A/metabolism , Endocytosis , Epithelial Cells/metabolism , Neurons/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , Mice
12.
Anaerobe ; 53: 5-10, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29866424

ABSTRACT

Clostridium perfringens causes many different histotoxic and enterotoxic diseases in humans and animals as a result of its ability to produce potent protein toxins, many of which are extracellular. The current scheme for the classification of isolates was finalized in the 1960s and is based on their ability to produce a combination of four typing toxins - α-toxin, ß-toxin, ε-toxin and ι-toxin - to divide C. perfringens strains into toxinotypes A to E. However, this scheme is now outdated since it does not take into account the discovery of other toxins that have been shown to be required for specific C. perfringens-mediated diseases. We present a long overdue revision of this toxinotyping scheme. The principles for the expansion of the typing system are described, as is a mechanism by which new toxinotypes can be proposed and subsequently approved. Based on these criteria two new toxinotypes have been established. C. perfringens type F consists of isolates that produce C. perfringens enterotoxin (CPE), but not ß-toxin, ε-toxin or ι-toxin. Type F strains will include strains responsible for C. perfringens-mediated human food poisoning and antibiotic associated diarrhea. C. perfringens type G comprises isolates that produce NetB toxin and thereby cause necrotic enteritis in chickens. There are at least two candidates for future C. perfringens toxinotypes, but further experimental work is required before these toxinotypes can formally be proposed and accepted.


Subject(s)
Bacterial Toxins/analysis , Bacterial Typing Techniques/methods , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Clostridium perfringens/classification , Animals , Clostridium perfringens/isolation & purification , Humans
13.
Cell Microbiol ; 18(2): 282-301, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26294282

ABSTRACT

Botulinum neurotoxins (BoNTs) are responsible for severe flaccid paralysis (botulism), which in most cases enter the organism via the digestive tract and then disseminate into the blood or lymph circulation to target autonomic and motor nerve endings. The passage way of BoNTs alone or in complex forms with associated nontoxic proteins through the epithelial barrier of the digestive tract still remains unclear. Here, we show using an in vivo model of mouse ligated intestinal loop that BoNT/B alone or the BoNT/B C-terminal domain of the heavy chain (HCcB), which interacts with cell surface receptors, translocates across the intestinal barrier. The BoNT/B or HCcB translocation through the intestinal barrier occurred via an endocytosis-dependent mechanism within 10-20 min, because Dynasore, a potent endocytosis inhibitor, significantly prevented BoNT/B as well as HCcB translocation. We also show that HCcB or BoNT/B specifically targets neuronal cells and neuronal extensions in the intestinal submucosa and musculosa expressing synaptotagmin, preferentially cholinergic neurons and to a lower extent other neuronal cell types, notably serotonergic neurons. Interestingly, rare intestinal epithelial cells accumulated HCcB suggesting that distinct cell types of the intestinal epithelium, still undefined, might mediate efficient translocation of BoNT/B.


Subject(s)
Botulinum Toxins, Type A/metabolism , Cholinergic Neurons/metabolism , Endocytosis , Intestinal Mucosa/metabolism , Animals , Epithelial Cells/metabolism , Mice , Protein Transport , Serotonergic Neurons/metabolism , Time Factors
14.
Cell Microbiol ; 17(2): 288-302, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25266274

ABSTRACT

Clostridium perfringens iota toxin is a binary toxin that is organized into enzyme (Ia) and binding (Ib) components. Ib forms channels in lipid bilayers and mediates the transport of Ia into the target cells. Here we show that Ib residues 334-359 contain a conserved pattern of alternating hydrophobic and hydrophilic residues forming two amphipathic ß-strands involved in membrane insertion and channel formation. This stretch of amino acids shows remarkable structural and functional analogies with the ß-pore-forming domain of C. perfringens epsilon toxin. Several mutations within the two amphipathic ß-strands affected pore formation, single-channel conductance and ion selectivity (S339E-S341E, Q345H N346E) confirming their involvement in channel formation. F454 of Ib corresponds to the Φ-clamp F427 of anthrax protective antigen and F428 of C2II binary toxins. The mutation F454A resulted in a loss of cytotoxicity and strong increase in single-channel conductance (500 pS as compared with 85 pS in 1 M KCl) with a slight decrease in cation selectivity, indicating that the Φ-clamp is highly conserved and crucial for binary toxin activity. In contrast, the mutants Q367D, N430D, L443E had no or only minor effects on Ib properties, while T360I, T360A and T360W caused a dramatic effect on ion selectivity and single-channel conductance, indicating gross disturbance of the oligomer structure. This suggests that, at least in the iota toxin family, T360 has a structural role in the pore organization. Moreover, introduction of charged residues within the channel (S339E-S341E) or in the vestibule (Q367D, N430D and L443E) had virtually no effect on chloroquine or Ia binding, whereas F454A, T360I, T360A and T360W strongly decreased the chloroquine and Ia affinity to Ib. These results support that distinct residues within the vestibule interact with chloroquine and Ia or are responsible for channel structure, while the channel lining amino acids play a less important role.


Subject(s)
ADP Ribose Transferases/metabolism , Bacterial Toxins/metabolism , Cell Membrane/drug effects , Clostridium perfringens/metabolism , ADP Ribose Transferases/genetics , Amino Acid Sequence , Bacterial Toxins/genetics , Clostridium perfringens/genetics , DNA Mutational Analysis , Models, Molecular , Molecular Sequence Data , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Protein Conformation , Sequence Alignment
15.
Cell Microbiol ; 17(3): 369-88, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25287162

ABSTRACT

Epsilon toxin (ET) is produced by Clostridium perfringens types B and D and causes severe neurological disorders in animals. ET has been observed binding to white matter, suggesting that it may target oligodendrocytes. In primary cultures containing oligodendrocytes and astrocytes, we found that ET (10(-9) M and 10(-7) M) binds to oligodendrocytes, but not to astrocytes. ET induces an increase in extracellular glutamate, and produces oscillations of intracellular Ca(2+) concentration in oligodendrocytes. These effects occurred without any change in the transmembrane resistance of oligodendrocytes, underlining that ET acts through a pore-independent mechanism. Pharmacological investigations revealed that the Ca(2+) oscillations are caused by the ET-induced rise in extracellular glutamate concentration. Indeed, the blockade of metabotropic glutamate receptors type 1 (mGluR1) prevented ET-induced Ca(2+) signals. Activation of the N-methyl-D-aspartate receptor (NMDA-R) is also involved, but to a lesser extent. Oligodendrocytes are responsible for myelinating neuronal axons. Using organotypic cultures of cerebellar slices, we found that ET induced the demyelination of Purkinje cell axons within 24 h. As this effect was suppressed by antagonizing mGluR1 and NMDA-R, demyelination is therefore caused by the initial ET-induced rise in extracellular glutamate concentration. This study reveals the novel possibility that ET can act on oligodendrocytes, thereby causing demyelination. Moreover, it suggests that for certain cell types such as oligodendrocytes, ET can act without forming pores, namely through the activation of an undefined receptor-mediated pathway.


Subject(s)
Bacterial Toxins/toxicity , Clostridium perfringens/physiology , Demyelinating Diseases , Oligodendroglia/drug effects , Animals , Calcium/metabolism , Cells, Cultured , Cerebellum/microbiology , Cerebellum/pathology , Glutamic Acid/metabolism , Rats
16.
BMC Biotechnol ; 15: 86, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26382731

ABSTRACT

BACKGROUND: Botulism is a naturally occurring disease, mainly caused by the ingestion of food contaminated by the botulinum neurotoxins (BoNTs). Botulinum neurotoxins are the most lethal. They are classified among the six major biological warfare agents by the Centers for Disease Control. BoNTs act on the cholinergic motoneurons, where they cleave proteins implicated in acetylcholine vesicle exocytosis. This exocytosis inhibition induces a flaccid paralysis progressively affecting all the muscles and generally engendering a respiratory distress. BoNTs are also utilized in medicine, mainly for the treatment of neuromuscular disorders, preventing large scale vaccination. Botulism specific treatment requires injections of antitoxins, usually of equine origin and thus poorly tolerated. Therefore, development of human or human-like neutralizing antibodies is of a major interest, and it is the subject of the European framework project called "AntiBotABE". RESULTS: In this study, starting from a macaque immunized with the recombinant heavy chain of BoNT/A1 (BoNT/A1-HC), an immune antibody phage-display library was generated and antibody fragments (single chain Fragment variable) with nanomolar affinity were isolated and further characterized. The neutralization capacities of these scFvs were analyzed in the mouse phrenic nerve-hemidiaphragm assay. CONCLUSIONS: After a three-round panning, 24 antibody fragments with affinity better than 10 nM were isolated. Three of them neutralized BoNT/A1 efficiently and two cross-neutralized BoNT/A1 and BoNT/A2 subtypes in the mouse phrenic nerve-hemidiaphragm assay. These are the first monoclonal human-like antibodies cross-neutralizing both BoNT/A1 and BoNT/A2. The antibody A1HC38 was selected for further development, and could be clinically developed for the prophylaxis and treatment of botulism.


Subject(s)
Antibodies, Bacterial/isolation & purification , Antibodies, Neutralizing/isolation & purification , Botulinum Toxins, Type A/immunology , Recombinant Proteins/isolation & purification , Single-Chain Antibodies/isolation & purification , Animals , Antibodies, Bacterial/chemistry , Antibodies, Bacterial/genetics , Antibodies, Bacterial/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Biological Warfare Agents , Clostridium botulinum/immunology , Humans , Macaca , Male , Mice , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology
17.
J Clin Microbiol ; 53(2): 722-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25428161

ABSTRACT

An outbreak of human botulism was due to consumption of ham containing botulinum neurotoxins B and E. A Clostridium botulinum type E strain isolated from ham was assigned to a new subtype (E12) based on bont/E gene sequencing and belongs to a new multilocus sequence subtype, as analyzed by whole-genome sequencing.


Subject(s)
Botulism/epidemiology , Botulism/microbiology , Clostridium botulinum type A/isolation & purification , Clostridium botulinum type F/isolation & purification , Disease Outbreaks , Food Microbiology , Clostridium botulinum type A/genetics , Clostridium botulinum type F/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Female , Genome, Bacterial , Genotype , Humans , Male , Middle Aged , Molecular Sequence Data , Multilocus Sequence Typing , Phylogeny , Sequence Analysis, DNA , Sequence Homology
18.
J Clin Microbiol ; 53(4): 1423-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25609723

ABSTRACT

We report a case of foot infection by Clostridium sordellii and review 15 human infections registered at a Reference Center in France during the period 1998 to 2011. All strains were found nontoxigenic, lacking the lethal toxin gene coding for TcsL. Like Clostridium septicum, several C. sordellii infections were associated with intestinal neoplasms.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Clostridium Infections/microbiology , Clostridium sordellii/isolation & purification , Foot Diseases/microbiology , Adult , Aged , Aged, 80 and over , Clostridium Infections/drug therapy , Clostridium Infections/epidemiology , Female , France/epidemiology , Humans , Male , Middle Aged , Molecular Sequence Data
19.
Cell Microbiol ; 16(11): 1706-21, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24905543

ABSTRACT

Large clostridial glucosylating toxins (LCGTs) are produced by toxigenic strains of Clostridium difficile, Clostridium perfringens, Clostridium novyi and Clostridium sordellii. While most C. sordellii strains solely produce lethal toxin (TcsL), C. sordellii strain VPI9048 co-produces both hemorrhagic toxin (TcsH) and TcsL. Here, the sequences of TcsH-9048 and TcsL-9048 are provided, showing that both toxins retain conserved LCGT features and that TcsL and TcsH are highly related to Toxin A (TcdA) and Toxin B (TcdB) from C. difficile strain VPI10463. The substrate profile of the toxins was investigated with recombinant LCGT transferase domains (rN) and a wide panel of small GTPases. rN-TcsH-9048 and rN-TcdA-10463 glucosylated preferably Rho-GTPases but also Ras-GTPases to some extent. In this respect, rN-TcsH-9048 and rN-TcdA-10463 differ from the respective full-length TcsH-9048 and TcdA-10463, which exclusively glucosylate Rho-GTPases. rN-TcsL-9048 and full length TcsL-9048 glucosylate both Rho- and Ras-GTPases, whereas rN-TcdB-10463 and full length TcdB-10463 exclusively glucosylate Rho-GTPases. Vero cells treated with full length TcsH-9048 or TcdA-10463 also showed glucosylation of Ras, albeit to a lower extent than of Rho-GTPases. Thus, in vitro analysis of substrate spectra using recombinant transferase domains corresponding to the auto-proteolytically cleaved domains, predicts more precisely the in vivo substrates than the full length toxins. Except for TcdB-1470, all LCGTs evoked increased expression of the small GTPase RhoB, which exhibited cytoprotective activity in cells treated with TcsL isoforms, but pro-apoptotic activity in cells treated with TcdA, TcdB, and TcsH. All LCGTs induced a rapid dephosphorylation of pY118-paxillin and of pS144/141-PAK1/2 prior to actin filament depolymerization indicating that disassembly of focal adhesions is an early event leading to the disorganization of the actin cytoskeleton.


Subject(s)
Bacterial Toxins/metabolism , Clostridium sordellii/metabolism , Glycosylation , Monomeric GTP-Binding Proteins/metabolism , Bacterial Toxins/genetics , Clostridium sordellii/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Substrate Specificity
20.
Anal Bioanal Chem ; 407(19): 5559-70, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26038189

ABSTRACT

Botulinum neurotoxins (BoNT) are divided into seven toxinotypes based on their immunological properties and each toxinotype contains several subtypes according to their amino acid sequences. Here, we designed a mass spectrometry method able to identify BoNT/A subtypes in complex matrices including crude culture supernatants, food, and environmental samples. Peptides from BoNT light chain (L) specific to the subtypes BoNT/A1 to A3 and BoNT/A5 to A8 were identified. The method consists of an immunocapture step with antibodies specific to BoNT/A L chains followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) on a triple quadrupole mass spectrometer (QqQ) in multiple reaction monitoring (MRM) mode. BoNT/A subtypes were correctly identified in culture supernatants and in tap water or orange juice samples with a limit of detection of 20 to 150 mouse lethal doses (MLD) and with a lower sensitivity in serum samples.


Subject(s)
Botulinum Toxins, Type A/chemistry , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Female , Food Contamination , Limit of Detection , Mice , Mice, Inbred BALB C , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL