Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Hum Genet ; 102(5): 832-844, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29706351

ABSTRACT

Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by the progressive development of kidney cysts, often resulting in end-stage renal disease (ESRD). This disorder is genetically heterogeneous with ∼7% of families genetically unresolved. We performed whole-exome sequencing (WES) in two multiplex ADPKD-like pedigrees, and we analyzed a further 591 genetically unresolved, phenotypically similar families by targeted next-generation sequencing of 65 candidate genes. WES identified a DNAJB11 missense variant (p.Pro54Arg) in two family members presenting with non-enlarged polycystic kidneys and a frameshifting change (c.166_167insTT) in a second family with small renal and liver cysts. DNAJB11 is a co-factor of BiP, a key chaperone in the endoplasmic reticulum controlling folding, trafficking, and degradation of secreted and membrane proteins. Five additional multigenerational families carrying DNAJB11 mutations were identified by the targeted analysis. The clinical phenotype was consistent in the 23 affected members, with non-enlarged cystic kidneys that often evolved to kidney atrophy; 7 subjects reached ESRD from 59 to 89 years. The lack of kidney enlargement, histologically evident interstitial fibrosis in non-cystic parenchyma, and recurring episodes of gout (one family) suggested partial phenotypic overlap with autosomal-dominant tubulointerstitial diseases (ADTKD). Characterization of DNAJB11-null cells and kidney samples from affected individuals revealed a pathogenesis associated with maturation and trafficking defects involving the ADPKD protein, PC1, and ADTKD proteins, such as UMOD. DNAJB11-associated disease is a phenotypic hybrid of ADPKD and ADTKD, characterized by normal-sized cystic kidneys and progressive interstitial fibrosis resulting in late-onset ESRD.


Subject(s)
Alleles , HSP40 Heat-Shock Proteins/genetics , Mutation/genetics , Polycystic Kidney, Autosomal Dominant/genetics , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Base Sequence , Epithelial Cells/metabolism , Family , Female , HSP40 Heat-Shock Proteins/chemistry , Humans , Loop of Henle/pathology , Male , Middle Aged , Pedigree , Polycystic Kidney, Autosomal Dominant/diagnostic imaging , Polycystic Kidney, Autosomal Dominant/pathology , TRPP Cation Channels/genetics , Uromodulin/metabolism , Exome Sequencing , Young Adult
3.
Am J Hum Genet ; 98(6): 1193-1207, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27259053

ABSTRACT

Autosomal-dominant polycystic kidney disease (ADPKD) is a common, progressive, adult-onset disease that is an important cause of end-stage renal disease (ESRD), which requires transplantation or dialysis. Mutations in PKD1 or PKD2 (∼85% and ∼15% of resolved cases, respectively) are the known causes of ADPKD. Extrarenal manifestations include an increased level of intracranial aneurysms and polycystic liver disease (PLD), which can be severe and associated with significant morbidity. Autosomal-dominant PLD (ADPLD) with no or very few renal cysts is a separate disorder caused by PRKCSH, SEC63, or LRP5 mutations. After screening, 7%-10% of ADPKD-affected and ∼50% of ADPLD-affected families were genetically unresolved (GUR), suggesting further genetic heterogeneity of both disorders. Whole-exome sequencing of six GUR ADPKD-affected families identified one with a missense mutation in GANAB, encoding glucosidase II subunit α (GIIα). Because PRKCSH encodes GIIß, GANAB is a strong ADPKD and ADPLD candidate gene. Sanger screening of 321 additional GUR families identified eight further likely mutations (six truncating), and a total of 20 affected individuals were identified in seven ADPKD- and two ADPLD-affected families. The phenotype was mild PKD and variable, including severe, PLD. Analysis of GANAB-null cells showed an absolute requirement of GIIα for maturation and surface and ciliary localization of the ADPKD proteins (PC1 and PC2), and reduced mature PC1 was seen in GANAB(+/-) cells. PC1 surface localization in GANAB(-/-) cells was rescued by wild-type, but not mutant, GIIα. Overall, we show that GANAB mutations cause ADPKD and ADPLD and that the cystogenesis is most likely driven by defects in PC1 maturation.


Subject(s)
Cysts/genetics , Liver Diseases/genetics , Mutation/genetics , Polycystic Kidney, Autosomal Dominant/genetics , alpha-Glucosidases/genetics , Adult , Aged , Amino Acid Sequence , CRISPR-Cas Systems , Cells, Cultured , Child , Female , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Male , Microscopy, Confocal , Middle Aged , Pedigree , Polycystic Kidney, Autosomal Dominant/pathology , Sequence Homology, Amino Acid
4.
Am J Physiol Renal Physiol ; 313(4): F1050-F1059, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28701314

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common monogenic hereditary disorders in humans characterized by fluid-filled cysts, primarily in the kidneys. Cux1, a cell cycle regulatory gene highly expressed during kidney development, is elevated in the cyst-lining cells of Pkd1 mutant mice, and in human ADPKD cells. However, forced expression of Cux1 is insufficient to induce cystic disease in transgenic mice or to induce rapid cyst formation after cilia disruption in the kidneys of adult mice. Here we report a double mutant mouse model that has a conditional deletion of the Pkd1 gene in the renal collecting ducts together with a targeted mutation in the Cux1 gene (Pkd1CD;Cux1tm2Ejn). While kidneys isolated from newborn Pkd1CD mice exhibit cortical and medullary cysts, kidneys isolated from newborn Pkd1CD;Cux1tm2Ejn-/- mice did not show any cysts. Because Cux1tm2Ejn-/- are perinatal lethal, we evaluated Pkd1CD mice that were heterozygote for the Cux1 mutation. Similar to the newborn Pkd1CD;Cux1tm2Ejn-/- mice, newborn Pkd1CD;Cux1tm2Ejn+/- mice did not show any cysts. Comparison of Pkd1CD and Pkd1CD;Cux1tm2Ejn+/- mice at later stages of development showed a reduction in the severity of PKD in the Pkd1CD;Cux1tm2Ejn+/- mice. Moreover, we observed an increase in expression of the cyclin kinase inhibitor p27, a target of Cux1 repression, in the rescued collecting ducts. Taken together, our results suggest that Cux1 expression in PKD is not directly involved in cystogenesis but promotes cell proliferation required for expansion of existing cysts, primarily by repression of p27.


Subject(s)
Cell Proliferation , Homeodomain Proteins/metabolism , Kidney Tubules, Collecting/metabolism , Nuclear Proteins/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , Repressor Proteins/metabolism , Age Factors , Animals , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Disease Models, Animal , Disease Progression , Genetic Predisposition to Disease , Homeodomain Proteins/genetics , Kidney Tubules, Collecting/pathology , Mice, Knockout , Mutation , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Phenotype , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/prevention & control , Repressor Proteins/deficiency , Repressor Proteins/genetics , Severity of Illness Index , Signal Transduction , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
5.
Mod Pathol ; 30(7): 998-1012, 2017 07.
Article in English | MEDLINE | ID: mdl-28338654

ABSTRACT

A subset of renal cell carcinomas shows TFEB overexpression secondary to MALAT1-TFEB gene fusion. As alternate mechanisms of TFEB overexpression are likely to have the same effect, we sought to determine the frequency of amplification of TFEB and the adjacent VEGFA gene at 6p21.1. As patients with metastatic renal cell carcinomas are managed with anti-VEGF therapies, we retrospectively assessed therapeutic response in patients with amplified tumors. Amplification status was analyzed for 875 renal cell carcinomas from our institution, a consultative case and 794 cases from The Cancer Genome Atlas. Cases were classified as having low level (5-10 copies), and high-level amplification (>10 copies), and were further analyzed for adjacent oncogene copy number status (n=6; 3 single-nucleotide polymorphism genomic microarray, 3 The Cancer Genome Atlas) and structural rearrangements (n=1; mate-pair sequencing). These were then reviewed for histopathology, immunophenotype, and response to VEGF-targeted therapy on follow-up. In all, 10/875 (1.1%) institutional cases, 1 consultative case, and 3/794 (0.4%) of The Cancer Genome Atlas cases showed TFEB high-level amplification, while 14/875 (1.6%) cases showed TFEB low-level amplification. All cases had associated VEGFA amplification. This was confirmed with evaluation for copy number changes (n=6). The 6p21.1 high and low-level amplified tumors occurred in adults (mean age: 66), with over half being ≥pT3 (13/25, 52%), and most showed oncocytic, tubulopapillary features and high grade (≥grade 3: 20/22, 91%). These were aggressive tumors with metastasis and death from renal cell carcinoma in 11 (of 24, 46%) cases. Four patients received targeted therapy and had a mean survival of 31 months (range: 17-50) post nephrectomy. In summary, a group of aggressive renal cell carcinomas show genomic amplification of the 6p21.1 region including TFEB and VEGFA genes and share morphologic features. Additional studies are warranted to determine whether these patients respond to anti-VEGF therapy.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/genetics , Gene Amplification , Kidney Neoplasms/genetics , Vascular Endothelial Growth Factor A/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Renal Cell/pathology , DNA Copy Number Variations , Female , Humans , Kidney Neoplasms/pathology , Male , Middle Aged , Polymorphism, Single Nucleotide
6.
Mol Genet Genomic Med ; 10(12): e2054, 2022 12.
Article in English | MEDLINE | ID: mdl-36106513

ABSTRACT

BACKGROUND: A de novo, pathogenic, missense variant in UBTF, c.628G>A p.Glu210Lys, has been described as the cause of an emerging neurodegenerative disorder, Childhood-Onset Neurodegeneration with Brain Atrophy (CONDBA). The p.Glu210Lys alteration yields a positively charged stretch of three lysine residues. Functional studies confirmed this change results in a stronger interaction with negatively charged DNA and gain-of-function activity when compared to the wild-type sequence. The CONDBA phenotype reported in association with p.Glu210Lys consists of normal early-neurodevelopment followed by progressive motor, cognitive, and behavioral regression in early-to-middle childhood. METHODS AND RESULTS: The current proband presented at 9 months of age with baseline developmental delay and more extensive neuroradiological findings, including pontine hypoplasia, thalamic volume loss and signal abnormality, and hypomyelination. Like the recurrent CONDBA p.Glu210Lys variant, this novel variant, c.608A>G p.(Gln203Arg) lies within the highly conserved second HMG-box homology domain and involves the replacement of the wild-type residue with a positively charged residue, arginine. Computational structural modeling demonstrates that this amino acid substitution potentiates the interaction between UBTF and DNA, likely resulting in a gain-of-function effect for the UBTF protein, UBF. CONCLUSION: Here we present a new divergent phenotype associated with a novel, likely pathogenic, missense variant at a different position in the UBTF gene, c.608A>G p.(Gln203Arg).


Subject(s)
Neoplasm Recurrence, Local , Neurodegenerative Diseases , Child , Humans , Neoplasm Recurrence, Local/pathology , Phenotype , Atrophy/genetics , Atrophy/pathology , Neurodegenerative Diseases/genetics , DNA , Brain/pathology
7.
J Mol Diagn ; 23(5): 651-657, 2021 05.
Article in English | MEDLINE | ID: mdl-33631350

ABSTRACT

The most recent build of the human reference genome, GRCh38, was released in 2013. However, many laboratories performing next-generation sequencing (NGS) continue to align to GRCh37. Our aim was to assess the number of clinical diagnostic laboratories that have migrated to GRCh38 and discern factors impeding migration for those still using GRCh37. A brief, five-question survey was electronically administered to 71 clinical laboratories offering constitutional NGS-based testing and analyzed categorically. Twenty-eight responses meeting inclusion criteria were collected from 24 academic and four commercial diagnostic laboratories. Most of these (14; 50%) reported volumes of <500 NGS-based tests in 2019. Only two respondents (7%) had already migrated entirely to GRCh38; most laboratories (15; 54%) had no plans to migrate. The two prevailing reasons for not yet migrating were as follows: laboratories did not feel the benefits outweighed the time and monetary costs (14; 50%); and laboratories had insufficient staff to facilitate the migration (12; 43%). These data, although limited, suggest most clinical molecular laboratories are reluctant to migrate to GRCh38, and there appear to be multiple obstacles to overcome before GRCh38 is widely adopted.


Subject(s)
Genome, Human , High-Throughput Nucleotide Sequencing/standards , Laboratories/standards , Molecular Sequence Annotation , Sequence Analysis, DNA/standards , Data Accuracy , High-Throughput Nucleotide Sequencing/methods , Humans , Reference Values , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL