Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(6): 3167-3173, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31980538

ABSTRACT

Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR-) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR- strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent Kd of ∼1 µM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR- strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.


Subject(s)
Bacterial Proteins/metabolism , Cell Hypoxia/genetics , Genetic Fitness/genetics , Hemerythrin/metabolism , Pseudomonas aeruginosa , Trans-Activators/metabolism , Bacterial Proteins/genetics , Hemerythrin/genetics , Oxygen/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/physiology , Trans-Activators/genetics
2.
J Exp Biol ; 224(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34694400

ABSTRACT

Variable spring temperatures may expose developing insects to sublethal conditions, resulting in long-term consequences. The alfalfa leafcutting bee, Megachile rotundata, overwinters as a prepupa inside a brood cell, resuming development in spring. During these immobile stages of development, bees must tolerate unfavorable temperatures. In this study, we tested how exposure to low temperature stress during development affects subsequent reproduction and characteristics of the F1 generation. Developing male and female M. rotundata were exposed to either constant (6°C) or fluctuating (1 h day-1 at 20°C) low temperature stress for 1 week, during the pupal stage, to mimic a spring cold snap. Treated adults were marked and released into field cages, and reproductive output was compared with that of untreated control bees. Exposure to low temperatures during the pupal stage had mixed effects on reproduction and offspring characteristics. Females treated with fluctuating low temperatures were more likely to nest compared with control bees or those exposed to constant low temperature stress. Sublethal effects may have contributed to low nesting rates of bees exposed to constant low temperatures. Females from that group that were able to nest had fewer, larger offspring with high viability, suggesting a trade-off. Interestingly, offspring of bees exposed to fluctuating low temperatures were more likely to enter diapause, indicating that thermal history of parents, even during development, is an important factor in diapause determination.


Subject(s)
Diapause , Medicago sativa , Animals , Bees , Female , Incidence , Male , Pupa , Temperature
3.
Elife ; 122023 03 27.
Article in English | MEDLINE | ID: mdl-36971354

ABSTRACT

Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.


Subject(s)
Communicable Diseases , Hantaan virus , Hantavirus Infections , Orthohantavirus , Animals , Humans , Antibodies, Neutralizing , Antibodies, Viral , Hantavirus Infections/prevention & control , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL