Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Langmuir ; 40(5): 2562-2566, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38276954

ABSTRACT

An electrochemical Langmuir-Blodgett trough that permits an examination of local redox processes in a layer floating on the surface of water with a scanning tunneling microscopy-tip ultramicroelectrode has been constructed and tested on a layer of 1,1'-dicarbooctadecyloxyferrocene.

2.
Molecules ; 27(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36364465

ABSTRACT

The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2'-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified AuNPs were characterized by TEM, UV-Vis spectroscopy, and electrochemistry. The most suitable electrochemical method was the phase-sensitive AC voltammetry at very low frequencies of the sine-wave perturbation. The results indicate a diminishing electronic communication between the two equivalent redox centers of TTF and also intermolecular donor-acceptor interactions manifested by an additional oxidation wave upon attachment of the ligand to AuNPs.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Electrochemistry/methods , Ligands , Metal Nanoparticles/chemistry
3.
Chemistry ; 27(71): 17889-17899, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34761431

ABSTRACT

The synergistic functioning of redox-active components that emerges from prototypical 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl is described. Interestingly, even if a trans conformation of the native assembly is expected, due to electrostatic repulsion between cationic pyridinium units, we demonstrate that cis conformation is equally energy-stabilized on account of a peculiar LUMO (SupLUMO) that develops through space, encompassing the two pyridiniums in a single, made-in-one-piece, electronic entity (superelectrophoric behavior). This SupLUMO emergence, with the cis species as superelectrophore embodiment, originates in a sudden change of electronic structure. This finding is substantiated by insights from solid state (single-crystal X-ray diffraction) and solution (NOE NMR and UV-vis-NIR spectroelectrochemistry) studies, combined with electronic structure computations. Electrochemistry shows that electron transfers are so strongly correlated that two-electron reduction manifests itself as a single-step process with a large potential inversion consistent with inner creation of a carbon-carbon bond (digital simulation). Besides, absence of reductive formation of dimers is a further indication of a preferential intramolecular reactivity determined by the SupLUMO interaction (cis isomer pre-organization). The redox-gated covalent bond, serving as electron reservoir, was studied via atropisomerism of the reduction product (VT NMR study). The overall picture derived from this in-depth study of 2,2'-di(N-methylpyrid-4-ylium)-1,1'-biphenyl proves that trans and cis species are worth considered as intrinsically sharply different, that is, as doubly-electrophoric and singly-superelectrophoric switchable assemblies, beyond conformational isomerism. Most importantly, the through-space-mediated SupLUMO may come in complement of other weak interactions encountered in Supramolecular Chemistry as a tool for the design of electroactive architectures.


Subject(s)
Electronics , Crystallography, X-Ray , Electrochemistry , Magnetic Resonance Spectroscopy , Molecular Conformation
4.
J Am Chem Soc ; 142(11): 5162-5176, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32101420

ABSTRACT

Molecular-level multielectron handling toward electrical storage is a worthwhile approach to solar energy harvesting. Here, a strategy which uses chemical bonds as electron reservoirs is introduced to demonstrate the new concept of "structronics" (a neologism derived from "structure" and "electronics"). Through this concept, we establish, synthesize, and thoroughly study two multicomponent "super-electrophores": 1,8-dipyridyliumnaphthalene, 2, and its N,N-bridged cyclophane-like analogue, 3. Within both of them, a covalent bond can be formed and subsequently broken electrochemically. These superelectrophores are based on two electrophoric (pyridinium) units that are, on purpose, spatially arranged by a naphthalene scaffold. A key characteristic of 2 and 3 is that they possess a LUMO that develops through space as the result of the interaction between the closely positioned electrophoric units. In the context of electron storage, this "super-LUMO" serves as an empty reservoir, which can be filled by a two-electron reduction, giving rise to an elongated C-C bond or "super-HOMO". Because of its weakened nature, this bond can undergo an electrochemically driven cleavage at a significantly more anodic-yet accessible-potential, thereby restoring the availability of the electron pair (reservoir emptying). In the representative case study of 2, an inversion of potential in both of the two-electron processes of bond formation and bond-cleavage is demonstrated. Overall, the structronic function is characterized by an electrochemical hysteresis and a chemical reversibility. This structronic superelectrophore can be viewed as the three-dimensional counterpart of benchmark methyl viologen (MV).

5.
Angew Chem Int Ed Engl ; 58(48): 17169-17174, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31539185

ABSTRACT

This work presents a general approach for synthesis of substituted [5]-helical dispiroindeno[2,1-c]fluorenes based on Rh-catalyzed intramolecular cyclotrimerization of triynes. This approach was further extended for the first synthesis of configurationally stable [7]-helical dispiroindeno[2,1-c]fluorenes. A series of variously substituted derivatives was prepared and their photophysical and electrochemical properties were evaluated. Their fluorescence emission maxima were in the region of 351-428 nm and quantum yields up to 88 % are the highest measured among the full-carbon helical compounds.

6.
J Org Chem ; 83(10): 5474-5479, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29652151

ABSTRACT

We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1•+, the radical anion 1•- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2•-.

7.
Chemistry ; 22(34): 12154-9, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27405657

ABSTRACT

We report an innovative synthetic route to linear extended diquats (linquats). Our approach is short and efficient and features a highly modular reaction sequence based on two-fold quaternization followed by the key intramolecular [2+2+2] alkyne cycloaddition. The physico-chemical properties of four new linquats were characterized by spectroscopic methods, X-ray crystallography, and electrochemistry complemented by information obtained from DFT calculations. Electron deficient N-heteroaromatic cations with linear extended diquat motif with high electron affinities have been recently recognized as attractive n-type semiconductors for chemical and biological sensing. Their advantageous redox properties such as very fast reversible electron transfers make the title compounds interesting for applications.

8.
Chemistry ; 22(37): 13218-35, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27505302

ABSTRACT

The efficient synthesis of tripodal platforms based on tetraphenylmethane with three acetyl-protected thiol groups in either meta or para positions relative to the central sp(3) carbon for deposition on Au (111) surfaces is reported. These platforms are intended to provide a vertical arrangement of the substituent in position 4 of the perpendicular phenyl ring and an electronic coupling to the gold substrate. The self-assembly features of both derivatives are analyzed on Au (111) surfaces by low-temperature ultra-high-vacuum STM, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and reductive voltammetric desorption studies. These experiments indicated that the meta derivative forms a well-ordered monolayer, with most of the anchoring groups bound to the surface, whereas the para derivative forms a multilayer film with physically adsorbed adlayers on the chemisorbed para monolayer. Single-molecule conductance values for both tripodal platforms are obtained through an STM break junction experiment.

9.
J Am Chem Soc ; 137(37): 12086-99, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26327466

ABSTRACT

Treatment of cleaned gold surfaces with dilute tetrahydrofuran or chloroform solutions of tetraalkylstannanes (alkyl = methyl, ethyl, n-propyl, n-butyl) or di-n-butylmethylstannyl tosylate under ambient conditions causes a self-limited growth of disordered monolayers consisting of alkyls and tin oxide. Extensive use of deuterium labeling showed that the alkyls originate from the stannane and not from ambient impurities, and that trialkylstannyl groups are absent in the monolayers, contrary to previous proposals. Methyl groups attached to the Sn atom are not transferred to the surface. Ethyl groups are transferred slowly, and propyl and butyl rapidly. In all cases, tin oxide is codeposited in submonolayer amounts. The monolayers were characterized by ellipsometry, contact angle goniometry, polarization modulated IR reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy with ferrocyanide/ferricyanide, which revealed a very low charge-transfer resistance. The thermal stability of the monolayers and their resistance to solvents are comparable with those of an n-octadecanethiol monolayer. A preliminary examination of the kinetics of monolayer deposition from a THF solution of tetra-n-butylstannane revealed an approximately half-order dependence on the bulk solution concentration of the stannane, hinting that more than one alkyl can be transferred from a single stannane molecule. A detailed structure of the attachment of the alkyl groups is not known, and it is proposed that it involves direct single or multiple bonding of one or more C atoms to one or more Au atoms.

10.
J Am Chem Soc ; 137(35): 11349-64, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26280907

ABSTRACT

A combined electrochemical and theoretical study of a series of pyridinium-based electrophores, consisting of reference N-alkyl-2,4,6-triarylpyridiniums (1-3) and N-aryl-expanded pyridiniums (EPs), i.e. N-aryl-2,4,6-triarylpyridiniums (4-10), is presented with the aim of elucidating multifaceted mechanisms underpinning the complex electrophoric activity of fluxional EP systems. Series 1-10 constitutes a library of model electrophores showing an incremental variation of their composition, charge, and steric hindrance. By kinetic mapping of the first two heterogeneous electron transfers (ETs) of 1-10 and computational mapping, at the density functional theory level, of their electronic and geometrical features in various redox states, it is established that, depending on whether EPs are made of one (4, 5) or two "head-to-tail"-connected pyridinium rings (6-10), the nature of the redox-triggered distortions (when allowed) is different, namely, N-pyramidalization due to hybridization change in the former case versus saddle-shaped distortion originating from conflicting intramolecular interactions in the latter case (8-10). When skeletal relaxations are sterically hampered, zwitterionic states and electron delocalization with quinoidal features are promoted as alternative relaxation modes. It follows that "potential compression" is changed to "potential expansion" (i.e., a further separation of redox potentials) in single-pyridinium EPs (4, 5), whereas "potential inversion" (i.e., single-step two-electron transfer; 8-10) is changed to stepwise ETs of the Weitz type for two-pyridinium EPs (6, 7). Overall, kinetic rate constants not only consistently indicate the most prominent mechanistic aspects of the reduction pathways of EPs, but they are also instrumental in establishing EPs as a unique class of electrophores.

11.
J Am Chem Soc ; 136(31): 10826-9, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-24597856

ABSTRACT

Two-step redox switching in enantiopure helquat system [P-1](2+) ⇌ [P-1](•+) ⇌ [P-1](0) is demonstrated. The viologen-type electroactive unit embedded directly in the helical scaffold of 1 is responsible for the prominent chiroptical switching at 264 nm. This process is associated with a marked sign-reversal of Cotton effect ramping between Δε = +35 M(-1) cm(-1) for [P-1](2+) and Δε = -100 M(-1) cm(-1) for [P-1](0). This helically chiral system features the most intense chiroptical switch response documented in the field of helicenoids.

12.
Chemistry ; 20(3): 877-93, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24339162

ABSTRACT

A comprehensive study on the physicochemical properties of a series of mono- and diaza[5]helicenes as well as mono- and diaza[6]helicenes is reported. Through the use of both computational and experimental methods, these helically chiral pyridohelicenes with the nitrogen atom(s) in various positions are characterised according to their inversion barriers, protonation constants and redox potentials. By using DFT calculations, kinetic measurements, UV/Vis titrations, cyclic voltammetry and EPR spectroscopy, a self-contained picture of their behaviour under conventional treatment by heat, acids and oxidising/reducing agents is provided.

13.
Chemistry ; 20(27): 8477-82, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24889552

ABSTRACT

A cobalt-mediated [2+2+2] cycloisomerisation of ynedinitriles to helical pyridazines in good to high yields was developed. The construction of the pyridazine nucleus from one alkyne and two nitrile units is proposed to follow either a conventional organometallic mechanism or to be triggered by a single-electron transfer from a Co(II) species. Various [5]-, [6]- and [7]helicene pyridazines were prepared.

14.
J Am Chem Soc ; 135(15): 5669-77, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23398478

ABSTRACT

Treatment of a gold surface with a solution of C18H37HgOTs under ambient conditions results in the formation of a covalently adsorbed monolayer containing alkyl chains attached directly to gold, Hg(0) atoms, and no tosyl groups. It is stable against a variety of chemical agents. When the initial deposition is performed at a positive applied potential and is followed by oxidative electrochemical stripping, the mercury can be completely removed, leaving a gold surface covered only with alkyl chains. The details of the attachment structure are not known. The conclusions are based on infrared spectroscopy, X-ray and UV photoelectron spectroscopy, ellipsometry, contact angle goniometry, differential pulse polarography, and measurements of electrode blocking and electrochemical admittance.

15.
Chemistry ; 19(19): 6108-21, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23495131

ABSTRACT

Short monodisperse oligo- (para-phenyleneethynylene) (pOPE) units bearing laterally attached tetrathio-substituted tetrathiofulvalene (TTF) units have been synthesised from functionalised aromatic building blocks by using the Sonogashira cross-coupling methodology. The unusual redox properties of these TTF-pOPE conjugates were observed by employing electrochemical methods, such as cyclic voltammetry and exhaustive electrolysis. We found that formally one half of the TTF units in the pOPE monomer 1, dimer 2, and trimer 3 (with 2, 4, and 6 TTF units, respectively) are electrochemically silent during the first-step oxidation at 0.49 V. We propose the formation of persistent mixed-valence complexes from the TTF and TTF(+·) units present in an equal ratio. Such mixed-valence dyads (single or multiple in the partially oxidised 1-3) exhibit an unusual stability towards oxidation until the potential of the second oxidation at 0.84 V is achieved. This finding suggests that below this potential the oxidation of the respective mix-valence complexes is extremely slow.

16.
Langmuir ; 29(52): 16084-92, 2013 Dec 31.
Article in English | MEDLINE | ID: mdl-24313270

ABSTRACT

As a part of our objective to build an immunosensor for the detection of the pesticide atrazine (ATZ) in environmental samples, we studied the self-assembling process of the disulfide derivative of the pesticide atrazine on a gold substrate. Atrazine-based self-assembled monolayers were characterized by ellipsometry, scanning tunneling microscopy, polarization-modulation infrared reflection-absorption spectroscopy (PM IRRAS), X-ray photoelectron spectroscopy and quartz crystal microbalance (QCM) measurements. Two different time constants for the adsorption process were observed, depending on the experimental method used. The QCM data reflect adsorption kinetics of the original disulfide compound, whereas ellipsometry and ex situ PM IRRAS refer to the formation of thiolate (ATZS) monolayers. In situ QCM data demonstrated the suitability of such monolayers for the detection of atrazine in aqueous samples. Exposure of the ATZS sensing surface to an anti-atrazine antibody (anti-ATZ IgG) resulted in complete coverage of the surface by antibody, whereas approximately half of the antibody molecules were displaced from the QCM sensor surface by further addition of atrazine into the solution.


Subject(s)
Antibodies, Immobilized , Antibodies/chemistry , Atrazine/chemistry , Biosensing Techniques , Gold/chemistry , Immunoassay/instrumentation , Microscopy, Electron, Scanning , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Surface Properties
17.
Inorg Chem ; 52(20): 11944-55, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24090453

ABSTRACT

The synthesis, characterization, redox behavior, and photophysical properties (both at room temperature in fluid solution and at 77 K in rigid matrix) of a series of four new molecular dyads (2-5) containing Ru(II)- or Os(II)-bis(terpyridine) subunits as chromophores and various expanded pyridinium subunits as electron acceptors are reported, along with the reference properties of a formerly reported dyad, 1. The molecular dyads 2-4 have been designed to have their (potentially emissive) triplet metal-to-ligand charge-transfer (MLCT) and charge-separated (CS) states close in energy, so that excited-state equilibration between these levels can take place. Such a situation is not shared by limit cases 1 and 5. For dyad 1, forward photoinduced electron transfer (time constant, 7 ps) and subsequent charge recombination (time constant, 45 ps) are evidenced, while for dyad 5, photoinduced electron transfer is thermodynamically forbidden so that MLCT decays are the only active deactivation processes. As regards 2-4, CS states are formed from MLCT states with time constants of a few dozens of picoseconds. However, for these latter species, such experimental time constants are not due to photoinduced charge separation but are related to the excited-state equilibration times. Comparative analysis of time constants for charge recombination from the CS states based on proper thermodynamic and kinetic models highlighted that, in spite of their apparently affiliated structures, dyads 1-4 do not constitute a homologous series of compounds as far as intercomponent electron transfer processes are concerned.

18.
J Am Chem Soc ; 134(5): 2691-705, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22200401

ABSTRACT

Contrary to 4,4'-dipyridinium (i.e., archetypal methyl viologen), which is reduced by two single-electron transfers (stepwise reduction), the 4,1'-dipyridinium isomer (so-called "head-to-tail" isomer) undergoes two electron transfers at apparently the same potential (single-step reduction). A combined theoretical and experimental study has been undertaken to establish that the latter electrochemical behavior, also observed for other polyarylpyridinium electrophores, is due to potential compression originating in a large structural rearrangement. Three series of branched expanded pyridiniums (EPs) were prepared: N-aryl-2,4,6-triphenylpyridiniums (Ar-TP), N-aryl-2,3,4,5,6-pentaphenylpyridiniums (Ar-XP), and N-aryl-3,5-dimethyl-2,4,6-triphenylpyridinium (Ar-DMTP). The intramolecular steric strain was tuned via N-pyridinio aryl group (Ar) phenyl (Ph), 4-pyridyl (Py), and 4-pyridylium (qPy) and their bulky 3,5-dimethyl counterparts, xylyl (Xy), lutidyl (Lu), and lutidylium (qLu), respectively. Ferrocenyl subunits as internal redox references were covalently appended to representative electrophores in order to count the electrons involved in EP-centered reduction processes. Depending on the steric constraint around the N-pyridinio site, the two-electron reduction is single-step (Ar = Ph, Py, qPy) or stepwise (Ar = Xy, Lu, qLu). This steric switching of the potential compression is accurately accounted for by ab initio modeling (Density Functional Theory, DFT) that proposes a mechanism for pyramidalization of the N(pyridinio) atom coupled with reduction. When the hybridization change of this atom is hindered (Ar = Xy, Lu, qLu), the first reduction is a one-electron process. Theory also reveals that the single-step two-electron reduction involves couples of redox isomers (electromers) displaying both the axial geometry of native EPs and the pyramidalized geometry of doubly reduced EPs. This picture is confirmed by a combined UV-vis-NIR spectroelectrochemical and time-dependent DFT study: comparison of in situ spectroelectrochemical data with the calculated electronic transitions makes it possible to both evidence the distortion and identify the predicted electromers, which play decisive roles in the electron-transfer mechanism. Last, this mechanism is further supported by in-depth analysis of the electronic structures of electrophores in their various reduction states (including electromeric forms).


Subject(s)
Electrons , Polymers/chemistry , Pyridinium Compounds/chemistry , Molecular Structure , Oxidation-Reduction
19.
Chemistry ; 18(39): 12267-77, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-22899019

ABSTRACT

A series of mono- and 1,1'-diheteroatom-substituted ferrocene derivatives as well as acylated ferrocenes was prepared efficiently by a unified strategy that consists of selective mono- and 1,1'-dilithiation reactions and subsequent coupling with carbon, phosphorus, sulfur and halogen electrophiles. Chemical oxidation of the ferrocene derivatives by benzoquinone, 2,3-dichloro-5,6-dicyanobenzoquinone, AgPF(6), or 2,2,6,6-tetramethyl-1-oxopiperidinium hexafluorophosphate provided the corresponding ferrocenium salts. The redox potentials of the synthesized ferrocenes were determined by cyclic voltammetry, and it was observed that all new ferrocenium salts have stronger oxidizing properties than standard ferrocenium hexafluorophosphate. An initial application of selected derivatives in an oxidative bicyclization revealed that they mediate the transformation under considerably milder conditions than ferrocenium hexafluorophosphate. Quantum chemical calculations of the reduction potentials of the substituted ferrocenium ions were carried out by using a standard thermodynamic cycle that involved the gas-phase energetics and solvation energies of the contributing species. A remarkable agreement between theory and experiment was found: the mean average deviation amounted to only 0.030 V and the maximum deviation to 0.1 V. This enabled the analysis of various physical contributions to the computed reduction potentials of these ferrocene derivatives, thereby providing insight into their electronic structure and physicochemical properties.


Subject(s)
Benzoquinones/chemistry , Benzoquinones/chemical synthesis , Ferrous Compounds/chemistry , Ferrous Compounds/chemical synthesis , Chemical Phenomena , Crystallography, X-Ray , Electrochemistry , Electrons , Metallocenes , Models, Theoretical , Molecular Structure , Oxidation-Reduction , Salts/chemistry
20.
Org Biomol Chem ; 9(2): 450-62, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21049101

ABSTRACT

A modular approach to the construction of monocationic quaternary N-heteroaromatic frameworks was developed capitalizing on a direct pyridine-type nitrogen quaternization followed by metal-catalyzed [2+2+2] cycloaddition with gaseous acetylene. The flexibility of the route is demonstrated on 12 diverse scaffolds based on pyridinium, quinolinium, thiazolium, benzothiazolium, imidazolium, and pyrimidinium. Electrochemical study revealed a quinolinium redox system with two electrochemically distinct forms that are interconverted by a homogeneous chemical reaction triggered by fast electron transfers (reduction at -0.7 V and oxidation at -0.05 V).

SELECTION OF CITATIONS
SEARCH DETAIL