Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Blood ; 143(19): 1931-1936, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38364112

ABSTRACT

ABSTRACT: Selection of patients with NPM1-mutated acute myeloid leukemia (AML) for allogeneic transplant in first complete remission (CR1-allo) remains controversial because of a lack of robust data. Consequently, some centers consider baseline FLT3-internal tandem duplication (ITD) an indication for transplant, and others rely on measurable residual disease (MRD) status. Using prospective data from the United Kingdom National Cancer Research Institute AML17 and AML19 studies, we examined the impact of CR1-allo according to peripheral blood NPM1 MRD status measured by quantitative reverse transcription polymerase chain reaction after 2 courses of induction chemotherapy. Of 737 patients achieving remission, MRD was positive in 19%. CR1-allo was performed in 46% of MRD+ and 17% of MRD- patients. We observed significant heterogeneity of overall survival (OS) benefit from CR1-allo according to MRD status, with substantial OS advantage for MRD+ patients (3-year OS with CR1-allo vs without: 61% vs 24%; hazard ratio [HR], 0.39; 95% confidence interval [CI], 0.24-0.64; P < .001) but no benefit for MRD- patients (3-year OS with CR1-allo vs without: 79% vs 82%; HR, 0.82; 95% CI, 0.50-1.33; P = .4). Restricting analysis to patients with coexisting FLT3-ITD, again CR1-allo only improved OS for MRD+ patients (3-year OS, 45% vs 18%; compared with 83% vs 76% if MRD-); no interaction with FLT3 allelic ratio was observed. Postinduction molecular MRD reliably identifies those patients who benefit from allogeneic transplant in first remission. The AML17 and AML19 trials were registered at www.isrctn.com as #ISRCTN55675535 and #ISRCTN78449203, respectively.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Neoplasm, Residual , Nucleophosmin , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , fms-Like Tyrosine Kinase 3/genetics , Induction Chemotherapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Prospective Studies , Remission Induction , Transplantation, Homologous
2.
Blood ; 143(4): 336-341, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37647641

ABSTRACT

ABSTRACT: Assessment of measurable residual disease (MRD) by quantitative reverse transcription polymerase chain reaction is strongly prognostic in patients with NPM1-mutated acute myeloid leukemia (AML) treated with intensive chemotherapy; however, there are no data regarding its utility in venetoclax-based nonintensive therapy, despite high efficacy in this genotype. We analyzed the prognostic impact of NPM1 MRD in an international real-world cohort of 76 previously untreated patients with NPM1-mutated AML who achieved complete remission (CR)/CR with incomplete hematological recovery following treatment with venetoclax and hypomethylating agents (HMAs) or low-dose cytarabine (LDAC). A total of 44 patients (58%) achieved bone marrow (BM) MRD negativity, and a further 14 (18%) achieved a reduction of ≥4 log10 from baseline as their best response, with no difference between HMAs and LDAC. The cumulative rates of BM MRD negativity by the end of cycles 2, 4, and 6 were 25%, 47%, and 50%, respectively. Patients achieving BM MRD negativity by the end of cycle 4 had 2-year overall of 84% compared with 46% if MRD was positive. On multivariable analyses, MRD negativity was the strongest prognostic factor. A total of 22 patients electively stopped therapy in BM MRD-negative remission after a median of 8 cycles, with 2-year treatment-free remission of 88%. In patients with NPM1-mutated AML attaining remission with venetoclax combination therapies, NPM1 MRD provides valuable prognostic information.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Nucleophosmin , Sulfonamides , Humans , Prognosis , Mutation , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Cytarabine , Neoplasm, Residual/genetics
3.
Blood ; 144(7): 714-728, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38691678

ABSTRACT

ABSTRACT: Although NPM1-mutated acute myeloid leukemia (AML) carries a generally favorable prognosis, many patients still relapse and die. Previous studies identified several molecular and clinical features associated with poor outcomes; however, only FLT3-internal tandem duplication (ITD) mutation and adverse karyotype are currently used for risk stratification because of inconsistent results and uncertainty about how other factors should influence treatment, particularly given the strong prognostic effect of postinduction measurable residual disease (MRD). Here, we analyzed a large group of patients with NPM1 mutations (NPM1mut) AML enrolled in prospective trials (National Cancer Research Institute [NCRI] AML17 and AML19, n = 1357) to delineate the impact of baseline molecular and clinical features, postinduction MRD status, and treatment intensity on the outcome. FLT3-ITD (hazard ratio [HR], 1.28; 95% confidence interval [CI], 1.01-1.63), DNMT3A (HR, 1.65; 95% CI, 1.32-2.05), WT1 (HR, 1.74; 95% CI, 1.27-2.38), and non-ABD NPM1mut (HR, 1.64; 95% CI, 1.22-2.21) were independently associated with poorer overall survival (OS). These factors were also strongly associated with MRD positivity. For patients who achieved MRD negativity, these mutations (except FLT3-ITD) were associated with an increased cumulative incidence of relapse (CIR) and poorer OS. However, apart from the few patients with adverse cytogenetics, we could not identify any group of MRD-negative patients with a CIR >40% or with benefit from allograft in first remission. Intensified chemotherapy with the FLAG-Ida (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin) regimen was associated with improved outcomes in all subgroups, with greater benefits observed in the high-risk molecular subgroups.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , Nuclear Proteins , Nucleophosmin , fms-Like Tyrosine Kinase 3 , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/drug therapy , Nuclear Proteins/genetics , Middle Aged , Female , Male , Adult , Aged , fms-Like Tyrosine Kinase 3/genetics , Prognosis , Young Adult , Neoplasm, Residual/genetics , DNA Methyltransferase 3A , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , WT1 Proteins/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Adolescent , Treatment Outcome , Aged, 80 and over
4.
Blood ; 135(9): 680-688, 2020 02 27.
Article in English | MEDLINE | ID: mdl-31932839

ABSTRACT

Relapse remains the most common cause of treatment failure for patients with acute myeloid leukemia (AML) who undergo allogeneic stem cell transplantation (alloSCT), and carries a grave prognosis. Multiple studies have identified the presence of measurable residual disease (MRD) assessed by flow cytometry before alloSCT as a strong predictor of relapse, but it is not clear how these findings apply to patients who test positive in molecular MRD assays, which have far greater sensitivity. We analyzed pretransplant blood and bone marrow samples by reverse-transcription polymerase chain reaction in 107 patients with NPM1-mutant AML enrolled in the UK National Cancer Research Institute AML17 study. After a median follow-up of 4.9 years, patients with negative, low (<200 copies per 105ABL in the peripheral blood and <1000 copies in the bone marrow aspirate), and high levels of MRD had an estimated 2-year overall survival (2y-OS) of 83%, 63%, and 13%, respectively (P < .0001). Focusing on patients with low-level MRD before alloSCT, those with FLT3 internal tandem duplications(ITDs) had significantly poorer outcome (hazard ratio [HR], 6.14; P = .01). Combining these variables was highly prognostic, dividing patients into 2 groups with 2y-OS of 17% and 82% (HR, 13.2; P < .0001). T-depletion was associated with significantly reduced survival both in the entire cohort (2y-OS, 56% vs 96%; HR, 3.24; P = .0005) and in MRD-positive patients (2y-OS, 34% vs 100%; HR, 3.78; P = .003), but there was no significant effect of either conditioning regimen or donor source on outcome. Registered at ISRCTN (http://www.isrctn.com/ISRCTN55675535).


Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual , Nuclear Proteins/genetics , Adolescent , Adult , Aged , Female , Hematopoietic Stem Cell Transplantation/mortality , Humans , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Nucleophosmin , Recurrence , Young Adult
5.
BMC Cancer ; 22(1): 1174, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376888

ABSTRACT

BACKGROUND: For patients with acute myeloid leukaemia (AML), the only potentially curative treatment is intensive chemotherapy (IC). This is highly toxic, particularly for patients > 60 years, potentially leading to prolonged hospitalisations requiring intensive supportive care, and sometimes treatment-related death. This also results in extensive healthcare costs and negatively impacts quality of life (QoL). Venetoclax with low-dose cytarabine (VEN + LDAC) is a novel, low-intensity treatment for AML patients who cannot receive IC. VEN + LDAC is given as an outpatient and toxicity appears significantly lower than with IC. Analysis of clinical trials performed to date are promising for patients with the genotype NPM1mutFLT3 ITDneg, where remission and survival rates appear comparable to those achieved with IC. METHODS: VICTOR is an international, two-arm, open-label, multi-centre, non-inferiority, randomised-controlled phase II trial to assess VEN + LDAC compared to standard of care (IC) as first-line treatment in older patients (initially aged ≥ 60 years) with newly diagnosed AML. The trial will recruit patients with a NPM1mutFLT3 ITDneg genotype; those with a favourable risk in relation to the experimental treatment. University of Birmingham is the UK co-ordinating centre, with national hubs in Aarhus University Hospital, Denmark, and Auckland District Health Board, New Zealand. The primary outcome is molecular event-free survival time where an event is defined as failure to achieve morphological complete response (CR) or CR with incomplete blood count recovery after two cycles of therapy; molecular persistence, progression or relapse requiring treatment change; morphological relapse, or; death. Secondary outcomes include cumulative resource use at 12- and 24-months, and QoL as assessed by EORTCQLQ-C30 and EQ-5D-3L at 3-, 6-, 12-, 18- and 24-months. The trial employs an innovative Bayesian design with target sample size of 156 patients aged > 60 years. DISCUSSION: The principle underpinning the VICTOR trial is that the chance of cure for patients in the experimental arm should not be compromised, therefore, an adaptive design with regular checks on accumulating data has been employed, which will allow for a staged expansion of the trial population to include younger patients if, and when, there is sufficient evidence of non-inferiority in older patients. TRIAL REGISTRATION: EudraCT: 2020-000,273-24; 21-Aug-2020. ISRCTN: 15,567,173; 08-Dec-2020.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Adult , Aged , Cytarabine , Quality of Life , Bayes Theorem , Standard of Care , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoplasm Recurrence, Local/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Antineoplastic Agents/therapeutic use , Nuclear Proteins , Clinical Trials, Phase II as Topic , Multicenter Studies as Topic
6.
Br J Haematol ; 193(2): 231-244, 2021 04.
Article in English | MEDLINE | ID: mdl-33058194

ABSTRACT

In recent years there have been major advances in the use of molecular diagnostic and monitoring techniques for patients with acute myeloid leukaemia (AML). Coupled with the simultaneous explosion of new therapeutic agents, this has sown the seeds for significant improvements to treatment algorithms. Here we show, using a selection of real-life examples, how molecular monitoring can be used to refine clinical decision-making and to personalise treatment in patients with AML with nucleophosmin (NPM1) mutations, core binding factor translocations and other fusion genes. For each case we review the established evidence base and provide practical recommendations where evidence is lacking or conflicting. Finally, we review important technical considerations that clinicians should be aware of in order to safely exploit these technologies as they undergo widespread implementation.


Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Molecular Diagnostic Techniques/methods , Neoplasm, Residual/genetics , Adolescent , Adult , Algorithms , Allografts/transplantation , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clinical Decision-Making/methods , Core Binding Factors/genetics , Female , Gene Fusion/genetics , Humans , Karyotype , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Molecular Diagnostic Techniques/standards , Mutation , Nuclear Proteins/genetics , Nucleophosmin , Outcome Assessment, Health Care , Precision Medicine/methods , Translocation, Genetic/genetics , Unrelated Donors
7.
Br J Haematol ; 192(6): 1026-1030, 2021 03.
Article in English | MEDLINE | ID: mdl-32458446

ABSTRACT

Based on promising results in older adults with acute myeloid leukaemia (AML), we treated patients with NPM1mut measurable residual disease (MRD) using off-label venetoclax in combination with low-dose cytarabine or azacitidine. Twelve consecutive patients were retrospectively identified, including five with molecular persistence and seven with molecular relapse/progression. All patients with molecular persistence achieved durable molecular complete remission (CRMRD- ) without transplantation. Six of seven patients with molecular relapse/progression achieved CRMRD- after 1-2 cycles of venetoclax. This paper highlights the promising efficacy of venetoclax-based therapy to reduce the relapse risk in patients with persistent or rising NPM1mut MRD.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Leukemia, Myeloid, Acute , Mutation , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Sulfonamides/administration & dosage , Adult , Aged , Aged, 80 and over , Female , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Neoplasm, Residual , Nucleophosmin , Retrospective Studies
8.
N Engl J Med ; 374(23): 2209-2221, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27276561

ABSTRACT

BACKGROUND: Recent studies have provided a detailed census of genes that are mutated in acute myeloid leukemia (AML). Our next challenge is to understand how this genetic diversity defines the pathophysiology of AML and informs clinical practice. METHODS: We enrolled a total of 1540 patients in three prospective trials of intensive therapy. Combining driver mutations in 111 cancer genes with cytogenetic and clinical data, we defined AML genomic subgroups and their relevance to clinical outcomes. RESULTS: We identified 5234 driver mutations across 76 genes or genomic regions, with 2 or more drivers identified in 86% of the patients. Patterns of co-mutation compartmentalized the cohort into 11 classes, each with distinct diagnostic features and clinical outcomes. In addition to currently defined AML subgroups, three heterogeneous genomic categories emerged: AML with mutations in genes encoding chromatin, RNA-splicing regulators, or both (in 18% of patients); AML with TP53 mutations, chromosomal aneuploidies, or both (in 13%); and, provisionally, AML with IDH2(R172) mutations (in 1%). Patients with chromatin-spliceosome and TP53-aneuploidy AML had poor outcomes, with the various class-defining mutations contributing independently and additively to the outcome. In addition to class-defining lesions, other co-occurring driver mutations also had a substantial effect on overall survival. The prognostic effects of individual mutations were often significantly altered by the presence or absence of other driver mutations. Such gene-gene interactions were especially pronounced for NPM1-mutated AML, in which patterns of co-mutation identified groups with a favorable or adverse prognosis. These predictions require validation in prospective clinical trials. CONCLUSIONS: The driver landscape in AML reveals distinct molecular subgroups that reflect discrete paths in the evolution of AML, informing disease classification and prognostic stratification. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT00146120.).


Subject(s)
Leukemia, Myeloid, Acute/genetics , Mutation , Adult , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A , DNA Mutational Analysis , Epistasis, Genetic , Gene Fusion , Genotype , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Middle Aged , Nuclear Proteins/genetics , Nucleophosmin , Prognosis , Proportional Hazards Models , Prospective Studies , RNA Splicing , Survival Analysis
10.
Genome Res ; 23(12): 2115-25, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24056532

ABSTRACT

The development of cancer is a dynamic evolutionary process in which intraclonal, genetic diversity provides a substrate for clonal selection and a source of therapeutic escape. The complexity and topography of intraclonal genetic architectures have major implications for biopsy-based prognosis and for targeted therapy. High-depth, next-generation sequencing (NGS) efficiently captures the mutational load of individual tumors or biopsies. But, being a snapshot portrait of total DNA, it disguises the fundamental features of subclonal variegation of genetic lesions and of clonal phylogeny. Single-cell genetic profiling provides a potential resolution to this problem, but methods developed to date all have limitations. We present a novel solution to this challenge using leukemic cells with known mutational spectra as a tractable model. DNA from flow-sorted single cells is screened using multiplex targeted Q-PCR within a microfluidic platform allowing unbiased single-cell selection, high-throughput, and comprehensive analysis for all main varieties of genetic abnormalities: chimeric gene fusions, copy number alterations, and single-nucleotide variants. We show, in this proof-of-principle study, that the method has a low error rate and can provide detailed subclonal genetic architectures and phylogenies.


Subject(s)
Clonal Evolution , Genomics/methods , Mutation , Neoplasms/genetics , Phylogeny , Single-Cell Analysis , Cell Line, Tumor , DNA Copy Number Variations , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Multiplex Polymerase Chain Reaction , Polymorphism, Single Nucleotide
12.
Blood ; 120(5): 1077-86, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22573403

ABSTRACT

We have used whole exome sequencing to compare a group of presentation t(4;14) with t(11;14) cases of myeloma to define the mutational landscape. Each case was characterized by a median of 24.5 exonic nonsynonymous single-nucleotide variations, and there was a consistently higher number of mutations in the t(4;14) group, but this number did not reach statistical significance. We show that the transition and transversion rates in the 2 subgroups are similar, suggesting that there was no specific mechanism leading to mutation differentiating the 2 groups. Only 3% of mutations were seen in both groups, and recurrently mutated genes include NRAS, KRAS, BRAF, and DIS3 as well as DNAH5, a member of the axonemal dynein family. The pattern of mutation in each group was distinct, with the t(4;14) group being characterized by deregulation of chromatin organization, actin filament, and microfilament movement. Recurrent RAS pathway mutations identified subclonal heterogeneity at a mutational level in both groups, with mutations being present as either dominant or minor subclones. The presence of subclonal diversity was confirmed at a single-cell level using other tumor-acquired mutations. These results are consistent with a distinct molecular pathogenesis underlying each subgroup and have important impacts on targeted treatment strategies. The Medical Research Council Myeloma IX trial is registered under ISRCTN68454111.


Subject(s)
Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 14 , Chromosomes, Human, Pair 4 , Clonal Evolution/genetics , Genetic Heterogeneity , Multiple Myeloma/genetics , Translocation, Genetic/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, Pair 14/genetics , Chromosomes, Human, Pair 4/genetics , Clinical Trials as Topic , Clonal Evolution/physiology , Female , Gene Dosage , Gene Expression Profiling , Humans , Loss of Heterozygosity/genetics , Male , Microarray Analysis , Models, Biological , Mutation/physiology , Signal Transduction/genetics , Validation Studies as Topic
13.
J Clin Oncol ; 42(10): 1158-1168, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38215358

ABSTRACT

PURPOSE: To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. PATIENTS AND METHODS: One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). RESULTS: There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. CONCLUSION: Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit.


Subject(s)
Idarubicin , Leukemia, Myeloid, Acute , Vidarabine/analogs & derivatives , fms-Like Tyrosine Kinase 3 , Adult , Humans , Gemtuzumab/therapeutic use , Granulocyte Colony-Stimulating Factor/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Progression-Free Survival , Cytarabine/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Vidarabine/therapeutic use , Nuclear Proteins/genetics , Mutation , Core Binding Factors , Recurrence , Antineoplastic Combined Chemotherapy Protocols/adverse effects
14.
Blood Adv ; 8(2): 343-352, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38039513

ABSTRACT

ABSTRACT: Molecular failure in NPM1-mutated acute myeloid leukemia (AML) inevitably progresses to frank relapse if untreated. Recently published small case series show that venetoclax combined with low-dose cytarabine or azacitidine can reduce or eliminate measurable residual disease (MRD). Here, we report on an international multicenter cohort of 79 patients treated for molecular failure with venetoclax combinations and report an overall molecular response (≥1-log reduction in MRD) in 66 patients (84%) and MRD negativity in 56 (71%). Eighteen of 79 patients (23%) required hospitalization, and no deaths were reported during treatment. Forty-one patients were bridged to allogeneic transplant with no further therapy, and 25 of 41 were MRD negative assessed by reverse transcription quantitative polymerase chain reaction before transplant. Overall survival (OS) for the whole cohort at 2 years was 67%, event-free survival (EFS) was 45%, and in responding patients, there was no difference in survival in those who received a transplant using time-dependent analysis. Presence of FLT3-ITD mutation was associated with a lower response rate (64 vs 91%; P < .01), worse OS (hazard ratio [HR], 2.50; 95% confidence interval [CI], 1.06-5.86; P = .036), and EFS (HR, 1.87; 95% CI, 1.06-3.28; P = .03). Eighteen of 35 patients who did not undergo transplant became MRD negative and stopped treatment after a median of 10 months, with 2-year molecular relapse free survival of 62% from the end of treatment. Venetoclax-based low intensive chemotherapy is a potentially effective treatment for molecular relapse in NPM1-mutated AML, either as a bridge to transplant or as definitive therapy.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , Leukemia, Myeloid, Acute , Nuclear Proteins , Sulfonamides , Humans , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Nuclear Proteins/genetics , Nucleophosmin/genetics , Recurrence , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
15.
Blood Adv ; 7(14): 3686-3694, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36939402

ABSTRACT

The European LeukaemiaNet (ELN) measurable residual disease (MRD) working group has published consensus guidelines to standardize molecular genetic MRD testing of the t(8;21)(q22;q22.1) RUNX1::RUNX1T1, inv(16)(p13.1q22) CBFB::MYH11, t(15;17)(q24.1;q21.2) PML::RARA, and NPM1 type A markers. A study featuring 29 international laboratories was performed to assess interlaboratory variation in testing and the subsequent interpretation of results, both crucial to patient safety. Most participants in this study were able to detect, accurately quantify, and correctly interpret MRD testing results, with a level of proficiency expected from a clinical trial or standard-of-care setting. However, a few testing and interpretive errors were identified that, in a patient setting, would have led to misclassification of patient outcomes and inappropriate treatment pathways being followed. Of note, a high proportion of participants reported false-positive results in the NPM1 marker-negative sample. False-positive results may have clinical consequences, committing patients to unneeded additional chemotherapy and/or transplant with the attendant risk of morbidity and mortality, which therefore highlights the need for ongoing external quality assessment/proficiency testing in this area. Most errors identified in the study were related to the interpretation of results. It was noted that the ELN guidance lacks clarity for certain clinical scenarios and highlights the requirement for urgent revision of the guidelines to elucidate these issues and related educational efforts around the revisions to ensure effective dissemination.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Longitudinal Studies , Neoplasm, Residual/diagnosis , Nuclear Proteins/genetics
16.
Blood Adv ; 7(16): 4539-4549, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37171402

ABSTRACT

Liposomal daunorubicin and cytarabine (CPX-351) improved overall survival (OS) compared with 7+3 chemotherapy in older patients with secondary acute myeloid leukemia (AML); to date, there have been no randomized studies in younger patients. The high-risk cohort of the UK NCRI AML19 trial (ISRCTN78449203) compared CPX-351 with FLAG-Ida in younger adults with newly diagnosed adverse cytogenetic AML or high-risk myelodysplastic syndromes (MDS). A total of 189 patients were randomized (median age, 56 years). Per clinical criteria, 49% of patients had de novo AML, 20% had secondary AML, and 30% had high-risk MDS. MDS-related cytogenetics were present in 73% of the patients, with a complex karyotype in 49%. TP53 was the most common mutated gene, in 43%. Myelodysplasia-related gene mutations were present in 75 (44%) patients. The overall response rate (CR + CRi) after course 2 was 64% and 76% for CPX-351 and FLAG-Ida, respectively. There was no difference in OS (13.3 months vs 11.4 months) or event-free survival in multivariable analysis. However, relapse-free survival was significantly longer with CPX-351 (median 22.1 vs 8.35 months). There was no difference between the treatment arms in patients with clinically defined secondary AML or those with MDS-related cytogenetic abnormalities; however, an exploratory subgroup of patients with MDS-related gene mutations had significantly longer OS with CPX-351 (median 38.4 vs 16.3 months). In conclusion, the OS of younger patients with adverse risk AML/MDS was not significantly different between CPX-351 and FLAG-Ida.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Humans , Aged , Middle Aged , Daunorubicin/therapeutic use , Cytarabine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/complications , Karyotype , United Kingdom
17.
Leukemia ; 37(10): 2066-2072, 2023 10.
Article in English | MEDLINE | ID: mdl-37558736

ABSTRACT

Patients with FLT3-mutated AML have a high relapse rate and suboptimal outcomes. Many have co-mutations suitable for measurable residual disease (MRD) monitoring by RT-qPCR and those destined to relapse can be identified by high or rising levels of MRD, called molecular failure.  This provides a window for pre-emptive intervention, but there is little evidence to guide treatment. The use of FLT3 inhibitors (FLT3i) appears attractive but their use has not yet been evaluated.  We identified 56 patients treated with FLT3i at molecular failure.  The FLT3 mutation was an ITD in 52, TKD in 7 and both in 3. Over half of patients had previously received midostaurin. Molecular failure occurred at a median 9.2 months from diagnosis and was treated with gilteritinib (n = 38), quizartinib (n = 7) or sorafenib (n = 11). 60% achieved a molecular response, with 45% reaching MRD negativity. Haematological toxicity was low, and 22 patients were bridged directly to allogeneic transplant with another 6 to donor lymphocyte infusion. 2-year overall survival was 80% (95%CI 69-93) and molecular event-free survival 56% (95%CI 44-72). High-sensitivity next-generation sequencing for FLT3-ITD at molecular failure identified patients more likely to benefit. FLT3i monotherapy for molecular failure is a promising strategy which merits evaluation in prospective studies.


Subject(s)
Leukemia, Myeloid, Acute , Salvage Therapy , Humans , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Neoplasm Recurrence, Local , Prospective Studies , Protein Kinase Inhibitors/therapeutic use
18.
Blood Adv ; 5(23): 5107-5111, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34555849

ABSTRACT

Monitoring of NPM1 mutant (NPM1mut) measurable residual disease (MRD) in acute myeloid leukemia (AML) has an established role in patients who are treated with intensive chemotherapy. The European LeukemiaNet has defined molecular persistence at low copy number (MP-LCN) as an MRD transcript level <1% to 2% with a <1-log change between any 2 positive samples collected after the end of treatment (EOT). Because the clinical impact of MP-LCN is unknown, we sought to characterize outcomes in patients with persistent NPM1mut MRD after EOT and identify factors associated with disease progression. Consecutive patients with newly diagnosed NPM1mut AML who received ≥2 cycles of intensive chemotherapy were included if bone marrow was NPM1mut MRD positive at the EOT, and they were not transplanted in first complete remission. One hundred patients were followed for a median of 23.5 months; 42% remained free of progression at 1 year, either spontaneously achieving complete molecular remission (CRMRD-; 30%) or retaining a low-level NPM1mut transcript (12% for ≥12 months and 9% at last follow-up). Forty percent met the criteria for MP-LCN. Preemptive salvage therapy significantly prolonged relapse-free survival. Risk factors associated with disease progression were concurrent FLT3-internal tandem duplication at diagnosis and suboptimal MRD response (NPM1mut reduction <4.4-log) at EOT.


Subject(s)
Leukemia, Myeloid, Acute , Nuclear Proteins , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Neoplasm, Residual , Nuclear Proteins/genetics , Remission Induction
19.
Nat Cancer ; 2(8): 835-852, 2021 08.
Article in English | MEDLINE | ID: mdl-34734190

ABSTRACT

Comparison of intratumor genetic heterogeneity in cancer at diagnosis and relapse suggests that chemotherapy induces bottleneck selection of subclonal genotypes. However, evolutionary events subsequent to chemotherapy could also explain changes in clonal dominance seen at relapse. We, therefore, investigated the mechanisms of selection in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) during induction chemotherapy where maximal cytoreduction occurs. To distinguish stochastic versus deterministic events, individual leukemias were transplanted into multiple xenografts and chemotherapy administered. Analyses of the immediate post-treatment leukemic residuum at single-cell resolution revealed that chemotherapy has little impact on genetic heterogeneity. Rather, it acts on extensive, previously unappreciated, transcriptional and epigenetic heterogeneity in BCP-ALL, dramatically reducing the spectrum of cell states represented, leaving a genetically polyclonal but phenotypically uniform population with hallmark signatures relating to developmental stage, cell cycle and metabolism. Hence, canalization of cell state accounts for a significant component of bottleneck selection during induction chemotherapy.


Subject(s)
Burkitt Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Burkitt Lymphoma/drug therapy , Cell Cycle , Humans , Induction Chemotherapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Recurrence
20.
Exp Cell Res ; 315(16): 2835-46, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19523942

ABSTRACT

The heterogeneity of tumours and uncertainties surrounding derived short-term cell cultures and established cell lines fundamentally challenge the research and understanding of tumour growth and development. When tumour cells are cultured, changes are inevitably induced due to the artificial growth conditions. Several recent studies have questioned how representative established cell lines or derived short-term cell cultures are of the tumour in situ. We have characterised gene expression changes induced by short-term culture in astrocytoma in order to determine whether derived short-term cell cultures are representative of the tumour in situ. In comparison to the majority of studies, paired biopsies and derived short-term cultures were investigated to reduce the effects of long-term culture and inter-tumour variability when comparing biopsies and derived cultures from tumours with the same histology from different individuals. We have used the Affymetrix GeneChip U133A to generate gene expression profiles of 6 paediatric pilocytic astrocytoma (PA) biopsies and derived short-term cell cultures and 3 adult glioblastoma multiforme (GBM) biopsies and derived short-term cultures. Significant differential gene expression is induced by short-term culture. However, when the biopsy and derived short-term cell culture samples were grouped according to tumour type (PA and GBM) a molecular signature of 608 genes showed significant differential expression between the groups. This gene cohort can distinguish PA and GBM tumours, regardless of the sample source, suggesting that astrocytoma derived short-term cultures do retain key aspects of the global tumour expression profile and are representative of the tumour in situ. Furthermore, these genes are involved in pathways and functions characteristic of adult GBM including VEGF signalling, hypoxia and TP53 signalling.


Subject(s)
Astrocytoma , Biomarkers, Tumor/metabolism , Brain Neoplasms , Tumor Cells, Cultured/metabolism , Adult , Animals , Astrocytoma/metabolism , Astrocytoma/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Child , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Oligonucleotide Array Sequence Analysis , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL