Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Microbiol ; 118(5): 570-587, 2022 11.
Article in English | MEDLINE | ID: mdl-36203260

ABSTRACT

Hepatitis C virus (HCV) infection is one of the most common causes of liver cancer. HCV infection causes chronic disease followed by cirrhosis, which often leads to hepatocellular carcinoma (HCC). In this study, we investigated the roles of exosome-associated miRNAs in HCV-induced disease pathology. Small RNA sequencing was performed to identify miRNAs that are differentially regulated in exosomes isolated from patient sera at two different stages of HCV infection: cirrhosis and hepatocellular carcinoma. Among the differentially expressed miRNAs, miR-375 was found to be significantly upregulated in exosomes isolated from patients with cirrhosis and HCC. A similar upregulation was observed in intracellular and extracellular/exosomal levels of miR-375 in HCV-JFH1 infected Huh7.5 cells. The depletion of miR-375 in infected cells inhibited HCV-induced cell migration and proliferation, suggesting a supportive role for miR-375 in HCV pathogenesis. miR-375, secreted through exosomes derived from HCV-infected cells, could also be transferred to naïve Huh7.5 cells, resulting in an increase in cell proliferation and migration in the recipient cells. Furthermore, we identified Insulin growth factor binding protein 4 (IGFBP4), a gene involved in cell growth and malignancy, as a novel target of miR-375. Our results demonstrate the critical involvement of exosome-associated miR-375 in HCV-induced disease progression.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Hepatitis C , Liver Neoplasms , MicroRNAs , Humans , Hepacivirus/genetics , Hepacivirus/metabolism , Exosomes/metabolism , Exosomes/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Insulin/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Hepatitis C/genetics , Hepatitis C/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
2.
J Med Virol ; 95(3): e28614, 2023 03.
Article in English | MEDLINE | ID: mdl-36840403

ABSTRACT

Exosomes are small extracellular vesicles secreted by cells and have a major role in cell-to-cell signaling. As dengue infection progresses from a mild to a severe form of infection, the exosome's microRNA (miRNA) composition might change, which may contribute to pathogenesis. In this study, a comprehensive analysis of serum exosomal miRNAs was performed and their involvement in dengue virus-induced disease progression in an Indian cohort was assessed. Small RNA-seq showed 50 differentially expressed exosomal miRNAs that were significantly dysregulated during dengue infection. After extensive validation, miR-96-5p was found to be significantly upregulated, whereas miR-146a-5p was significantly downregulated with the progression of disease to severe form. Interestingly, a strong positive correlation was found between the expression levels of miR-96-5p and miR-146a-5p and the platelet levels of the patients. Further, study of miR-146a-5p showed that it regulates the expression of the proteins which are involved in the immune responses. These results suggest that miR-96-5p and miR-146a-5p could be used as diagnostic and prognostic markers for dengue disease progression, in addition to the already available biochemical and pathological parameters.


Subject(s)
Dengue , MicroRNAs , Virus Diseases , Humans , Dengue/genetics , Disease Progression , MicroRNAs/metabolism , Patient Acuity , Exosomes/genetics
3.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895410

ABSTRACT

Background: The 4 serotypes of dengue virus (DENV1-4) can each cause potentially deadly dengue disease, and are spreading globally from tropical and subtropical areas to more temperate ones. Nepal provides a microcosm of this global phenomenon, having met each of these grim benchmarks. To better understand DENV transmission dynamics and spread into new areas, we chose to study dengue in Nepal and, in so doing, to build the onsite infrastructure needed to manage future, larger studies. Methods and Results: During the 2022 dengue season, we enrolled 384 patients presenting at a hospital in Kathmandu with dengue-like symptoms; 79% of the study participants had active or recent DENV infection (NS1 antigen and IgM). To identify circulating serotypes, we screened serum from 50 of the NS1 + participants by RT-PCR and identified DENV1, 2, and 3 - with DENV1 and 3 codominant. We also performed whole-genome sequencing of DENV, for the first time in Nepal, using our new on-site capacity. Sequencing analysis demonstrated the DENV1 and 3 genomes clustered with sequences reported from India in 2019, and the DENV2 genome clustered with a sequence reported from China in 2018. Conclusion: These findings highlight DENV's geographic expansion from neighboring countries, identify China and India as the likely origin of the 2022 DENV cases in Nepal, and demonstrate the feasibility of building onsite capacity for more rapid genomic surveillance of circulating DENV. These ongoing efforts promise to protect populations in Nepal and beyond by informing the development and deployment of DENV drugs and vaccines in real time.

SELECTION OF CITATIONS
SEARCH DETAIL