Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Neurosci ; 43(9): 1643-1656, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36732071

ABSTRACT

Healthy brain dynamics can be understood as the emergence of a complex system far from thermodynamic equilibrium. Brain dynamics are temporally irreversible and thus establish a preferred direction in time (i.e., arrow of time). However, little is known about how the time-reversal symmetry of spontaneous brain activity is affected by Alzheimer's disease (AD). We hypothesized that the level of irreversibility would be compromised in AD, signaling a fundamental shift in the collective properties of brain activity toward equilibrium dynamics. We investigated the irreversibility from resting-state fMRI and EEG data in male and female human patients with AD and elderly healthy control subjects (HCs). We quantified the level of irreversibility and, thus, proximity to nonequilibrium dynamics by comparing forward and backward time series through time-shifted correlations. AD was associated with a breakdown of temporal irreversibility at the global, local, and network levels, and at multiple oscillatory frequency bands. At the local level, temporoparietal and frontal regions were affected by AD. The limbic, frontoparietal, default mode, and salience networks were the most compromised at the network level. The temporal reversibility was associated with cognitive decline in AD and gray matter volume in HCs. The irreversibility of brain dynamics provided higher accuracy and more distinctive information than classical neurocognitive measures when differentiating AD from control subjects. Findings were validated using an out-of-sample cohort. Present results offer new evidence regarding pathophysiological links between the entropy generation rate of brain dynamics and the clinical presentation of AD, opening new avenues for dementia characterization at different levels.SIGNIFICANCE STATEMENT By assessing the irreversibility of large-scale dynamics across multiple brain signals, we provide a precise signature capable of distinguishing Alzheimer's disease (AD) at the global, local, and network levels and different oscillatory regimes. Irreversibility of limbic, frontoparietal, default-mode, and salience networks was the most compromised by AD compared with more sensory-motor networks. Moreover, the time-irreversibility properties associated with cognitive decline and atrophy outperformed and complemented classical neurocognitive markers of AD in predictive classification performance. Findings were generalized and replicated with an out-of-sample validation procedure. We provide novel multilevel evidence of reduced irreversibility in AD brain dynamics that has the potential to open new avenues for understating neurodegeneration in terms of the temporal asymmetry of brain dynamics.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Aged , Brain , Cerebral Cortex , Brain Mapping , Gray Matter , Magnetic Resonance Imaging
2.
Neuroimage ; 295: 120636, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38777219

ABSTRACT

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.


Subject(s)
Brain , Cognition , Electroencephalography , Humans , Male , Female , Adult , Cognition/physiology , Middle Aged , Brain/physiology , Aged , Young Adult , Individuality , Adolescent , Age Factors , Aging/physiology
3.
Alzheimers Dement ; 20(5): 3228-3250, 2024 May.
Article in English | MEDLINE | ID: mdl-38501336

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS: We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION: The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.


Subject(s)
Alzheimer Disease , Brain , Electroencephalography , Frontotemporal Dementia , Humans , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/pathology , Brain/physiopathology , Brain/pathology , Female , Alzheimer Disease/physiopathology , Male , Aged , Connectome , Middle Aged , Models, Neurological
4.
Neurobiol Dis ; 183: 106171, 2023 07.
Article in English | MEDLINE | ID: mdl-37257663

ABSTRACT

Although social functioning relies on working memory, whether a social-specific mechanism exists remains unclear. This undermines the characterization of neurodegenerative conditions with both working memory and social deficits. We assessed working memory domain-specificity across behavioral, electrophysiological, and neuroimaging dimensions in 245 participants. A novel working memory task involving social and non-social stimuli with three load levels was assessed across controls and different neurodegenerative conditions with recognized impairments in: working memory and social cognition (behavioral-variant frontotemporal dementia); general cognition (Alzheimer's disease); and unspecific patterns (Parkinson's disease). We also examined resting-state theta oscillations and functional connectivity correlates of working memory domain-specificity. Results in controls and all groups together evidenced increased working memory demands for social stimuli associated with frontocinguloparietal theta oscillations and salience network connectivity. Canonical frontal theta oscillations and executive-default mode network anticorrelation indexed non-social stimuli. Behavioral-variant frontotemporal dementia presented generalized working memory deficits related to posterior theta oscillations, with social stimuli linked to salience network connectivity. In Alzheimer's disease, generalized working memory impairments were related to temporoparietal theta oscillations, with non-social stimuli linked to the executive network. Parkinson's disease showed spared working memory performance and canonical brain correlates. Findings support a social-specific working memory and related disease-selective pathophysiological mechanisms.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Parkinson Disease , Humans , Memory, Short-Term , Alzheimer Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuropsychological Tests
5.
Neurobiol Dis ; 179: 106047, 2023 04.
Article in English | MEDLINE | ID: mdl-36841423

ABSTRACT

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.


Subject(s)
Alzheimer Disease , Brain , Connectome , Frontotemporal Dementia , Neural Pathways , Aged , Female , Humans , Male , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Electroencephalography , Frontal Lobe/diagnostic imaging , Frontal Lobe/physiopathology , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/physiopathology , Magnetic Resonance Imaging , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiopathology , Reproducibility of Results , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiopathology
6.
Neurobiol Dis ; 175: 105918, 2022 12.
Article in English | MEDLINE | ID: mdl-36375407

ABSTRACT

Brain functional networks have been traditionally studied considering only interactions between pairs of regions, neglecting the richer information encoded in higher orders of interactions. In consequence, most of the connectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more regions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysiology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neurodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and psychopathological-specific characterization of different neurodegenerative conditions.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Humans , Brain/pathology , Frontotemporal Dementia/pathology , Alzheimer Disease/pathology , Magnetic Resonance Imaging , Brain Mapping
7.
IEEE Trans Instrum Meas ; 69(3): 815-824, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32205896

ABSTRACT

Removal of artifacts induced by muscle activity is crucial for analysis of the electroencephalogram (EEG), and continues to be a challenge in experiments where the subject may speak, change facial expressions, or move. Ensemble empirical mode decomposition with canonical correlation analysis (EEMD-CCA) has been proven to be an efficient method for denoising of EEG contaminated with muscle artifacts. EEMD-CCA, likewise the majority of algorithms, does not incorporate any statistical information of the artifact, namely, electromyogram (EMG) recorded over the muscles actively contaminating the EEG. In this paper, we propose to extend EEMD-CCA in order to include an EMG array as information to aid the removal of artifacts, assessing the performance gain achieved when the number of EMG channels grow. By filtering adaptively (recursive least squares, EMG array as reference) each component resulting from CCA, we aim to ameliorate the distortion of brain signals induced by artifacts and denoising methods. We simulated several noise scenarios based on a linear contamination model, between real and synthetic EEG and EMG signals, and varied the number of EMG channels available to the filter. Our results exhibit a substantial improvement in the performance as the number of EMG electrodes increase from 2 to 16. Further increasing the number of EMG channels up to 128 did not have a significant impact on the performance. We conclude by recommending the use of EMG electrodes to filter components, as it is a computationally inexpensive enhancement that impacts significantly on performance using only a few electrodes.

8.
BMC Cell Biol ; 17 Suppl 1: 17, 2016 May 24.
Article in English | MEDLINE | ID: mdl-27228968

ABSTRACT

Mutations in human connexin (Cx) genes have been related to diseases, which we termed connexinopathies. Such hereditary disorders include nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Despite the clinical phenotypes of connexinopathies have been well documented, their pathogenic molecular determinants remain elusive. The purpose of this work is to identify common/uncommon patterns in channels function among Cx mutations linked to human diseases. To this end, we compiled and discussed the effect of mutations associated to Cx26, Cx32, Cx43, and Cx50 over gap junction channels and hemichannels, highlighting the function of the structural channel domains in which mutations are located and their possible role affecting oligomerization, gating and perm/selectivity processes.


Subject(s)
Channelopathies/metabolism , Connexins/chemistry , Connexins/metabolism , Animals , Channelopathies/genetics , Connexins/genetics , Gap Junctions/metabolism , Humans , Ion Channel Gating , Models, Molecular , Mutation/genetics
9.
Netw Neurosci ; 8(1): 275-292, 2024.
Article in English | MEDLINE | ID: mdl-38562297

ABSTRACT

High-altitude hypoxia triggers brain function changes reminiscent of those in healthy aging and Alzheimer's disease, compromising cognition and executive functions. Our study sought to validate high-altitude hypoxia as a model for assessing brain activity disruptions akin to aging. We collected EEG data from 16 healthy volunteers during acute high-altitude hypoxia (at 4,000 masl) and at sea level, focusing on relative changes in power and aperiodic slope of the EEG spectrum due to hypoxia. Additionally, we examined functional connectivity using wPLI, and functional segregation and integration using graph theory tools. High altitude led to slower brain oscillations, that is, increased δ and reduced α power, and flattened the 1/f aperiodic slope, indicating higher electrophysiological noise, akin to healthy aging. Notably, functional integration strengthened in the θ band, exhibiting unique topographical patterns at the subnetwork level, including increased frontocentral and reduced occipitoparietal integration. Moreover, we discovered significant correlations between subjects' age, 1/f slope, θ band integration, and observed robust effects of hypoxia after adjusting for age. Our findings shed light on how reduced oxygen levels at high altitudes influence brain activity patterns resembling those in neurodegenerative disorders and aging, making high-altitude hypoxia a promising model for comprehending the brain in health and disease.


Exposure to high-altitude hypoxia, with reduced oxygen levels, can replicate brain function changes akin to aging and Alzheimer's disease. In our work, we propose high-altitude hypoxia as a possible reversible model of human brain aging. We gathered EEG data at high altitude and sea level, investigating the impact of hypoxia on brainwave patterns and connectivity. Our findings revealed that high-altitude exposure led to slower and noisier brain oscillations and produced altered brain connectivity, resembling some remarkable changes seen in the aging process. Intriguingly, these changes were linked to age, even when hypoxia's effects were considered. Our research unveils how high-altitude conditions emulate brain patterns associated with aging and neurodegenerative conditions, providing valuable insights into the understanding of both normal and impaired brain function.

10.
Res Sq ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38562802

ABSTRACT

In a double-blinded cross-over design, 30 adults (mean age = 25.57, SD = 3.74; all male) were administered racemic ketamine and compared against saline infusion as a control. Both task-driven (auditory oddball paradigm) and resting-state EEG were recorded. HOI were computed using advanced multivariate information theory tools, allowing us to quantify nonlinear statistical dependencies between all possible electrode combinations. Results: Ketamine increased redundancy in brain dynamics, most significantly in the alpha frequency band. Redundancy was more evident during the resting state, associated with a shift in conscious states towards more dissociative tendencies. Furthermore, in the task-driven context (auditory oddball), the impact of ketamine on redundancy was more significant for predictable (standard stimuli) compared to deviant ones. Finally, associations were observed between ketamine's HOI and experiences of derealization. Conclusions: Ketamine appears to increase redundancy and genuine HOI across metrics, suggesting these effects correlate with consciousness alterations towards dissociation. HOI represents an innovative method to combine all signal spatial interactions obtained from low-density dry EEG in drug interventions, as it is the only approach that exploits all possible combinations from different electrodes. This research emphasizes the potential of complexity measures coupled with portable EEG devices in monitoring shifts in consciousness, especially when paired with low-density configurations, paving the way for better understanding and monitoring of pharmacological-induced changes.

11.
Appl Sci (Basel) ; 13(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-38435340

ABSTRACT

The neurocomputational model 'Directions into Velocities of Articulators' (DIVA) was developed to account for various aspects of normal and disordered speech production and acquisition. The neural substrates of DIVA were established through functional magnetic resonance imaging (fMRI), providing physiological validation of the model. This study introduces DIVA_EEG an extension of DIVA that utilizes electroencephalography (EEG) to leverage the high temporal resolution and broad availability of EEG over fMRI. For the development of DIVA_EEG, EEG-like signals were derived from original equations describing the activity of the different DIVA maps. Synthetic EEG associated with the utterance of syllables was generated when both unperturbed and perturbed auditory feedback (first formant perturbations) were simulated. The cortical activation maps derived from synthetic EEG closely resembled those of the original DIVA model. To validate DIVA_EEG, the EEG of individuals with typical voices (N = 30) was acquired during an altered auditory feedback paradigm. The resulting empirical brain activity maps significantly overlapped with those predicted by DIVA_EEG. In conjunction with other recent model extensions, DIVA_EEG lays the foundations for constructing a complete neurocomputational framework to tackle vocal and speech disorders, which can guide model-driven personalized interventions.

12.
Alzheimers Dement (Amst) ; 15(3): e12455, 2023.
Article in English | MEDLINE | ID: mdl-37424962

ABSTRACT

Introduction: Harmonization protocols that address batch effects and cross-site methodological differences in multi-center studies are critical for strengthening electroencephalography (EEG) signatures of functional connectivity (FC) as potential dementia biomarkers. Methods: We implemented an automatic processing pipeline incorporating electrode layout integrations, patient-control normalizations, and multi-metric EEG source space connectomics analyses. Results: Spline interpolations of EEG signals onto a head mesh model with 6067 virtual electrodes resulted in an effective method for integrating electrode layouts. Z-score transformations of EEG time series resulted in source space connectivity matrices with high bilateral symmetry, reinforced long-range connections, and diminished short-range functional interactions. A composite FC metric allowed for accurate multicentric classifications of Alzheimer's disease and behavioral variant frontotemporal dementia. Discussion: Harmonized multi-metric analysis of EEG source space connectivity can address data heterogeneities in multi-centric studies, representing a powerful tool for accurately characterizing dementia.

13.
Elife ; 122023 03 30.
Article in English | MEDLINE | ID: mdl-36995213

ABSTRACT

The treatment of neurodegenerative diseases is hindered by lack of interventions capable of steering multimodal whole-brain dynamics towards patterns indicative of preserved brain health. To address this problem, we combined deep learning with a model capable of reproducing whole-brain functional connectivity in patients diagnosed with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). These models included disease-specific atrophy maps as priors to modulate local parameters, revealing increased stability of hippocampal and insular dynamics as signatures of brain atrophy in AD and bvFTD, respectively. Using variational autoencoders, we visualized different pathologies and their severity as the evolution of trajectories in a low-dimensional latent space. Finally, we perturbed the model to reveal key AD- and bvFTD-specific regions to induce transitions from pathological to healthy brain states. Overall, we obtained novel insights on disease progression and control by means of external stimulation, while identifying dynamical mechanisms that underlie functional alterations in neurodegeneration.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/pathology , Magnetic Resonance Imaging , Brain , Frontotemporal Dementia/pathology , Alzheimer Disease/pathology , Atrophy/pathology
14.
Sci Data ; 10(1): 889, 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071313

ABSTRACT

The Latin American Brain Health Institute (BrainLat) has released a unique multimodal neuroimaging dataset of 780 participants from Latin American. The dataset includes 530 patients with neurodegenerative diseases such as Alzheimer's disease (AD), behavioral variant frontotemporal dementia (bvFTD), multiple sclerosis (MS), Parkinson's disease (PD), and 250 healthy controls (HCs). This dataset (62.7 ± 9.5 years, age range 21-89 years) was collected through a multicentric effort across five Latin American countries to address the need for affordable, scalable, and available biomarkers in regions with larger inequities. The BrainLat is the first regional collection of clinical and cognitive assessments, anatomical magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), diffusion-weighted MRI (DWI), and high density resting-state electroencephalography (EEG) in dementia patients. In addition, it includes demographic information about harmonized recruitment and assessment protocols. The dataset is publicly available to encourage further research and development of tools and health applications for neurodegeneration based on multimodal neuroimaging, promoting the assessment of regional variability and inclusion of underrepresented participants in research.


Subject(s)
Alzheimer Disease , Brain , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Young Adult , Alzheimer Disease/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Neuroimaging
15.
Biomed Phys Eng Express ; 8(4)2022 06 28.
Article in English | MEDLINE | ID: mdl-35320793

ABSTRACT

Neural entrainment, the synchronization of brain oscillations to the frequency of an external stimuli, is a key mechanism that shapes perceptual and cognitive processes.Objective.Using simulations, we investigated the dynamics of neural entrainment, particularly the period following the end of the stimulation, since the persistence (reverberation) of neural entrainment may condition future sensory representations based on predictions about stimulus rhythmicity.Methods.Neural entrainment was assessed using a modified Jansen-Rit neural mass model (NMM) of coupled cortical columns, in which the spectral features of the output resembled that of the electroencephalogram (EEG). We evaluated spectro-temporal features of entrainment as a function of the stimulation frequency, the resonant frequency of the neural populations comprising the NMM, and the coupling strength between cortical columns. Furthermore, we tested if the entrainment persistence depended on the phase of the EEG-like oscillation at the time the stimulus ended.Main Results.The entrainment of the column that received the stimulation was maximum when the frequency of the entrainer was within a narrow range around the resonant frequency of the column. When this occurred, entrainment persisted for several cycles after the stimulus terminated, and the propagation of the entrainment to other columns was facilitated. Propagation also depended on the resonant frequency of the second column, and the coupling strength between columns. The duration of the persistence of the entrainment depended on the phase of the neural oscillation at the time the entrainer terminated, such that falling phases (fromπ/2 to 3π/2 in a sine function) led to longer persistence than rising phases (from 0 toπ/2 and 3π/2 to 2π).Significance.The study bridges between models of neural oscillations and empirical electrophysiology, providing insights to the mechanisms underlying neural entrainment and the use of rhythmic sensory stimulation for neuroenhancement.


Subject(s)
Electroencephalography , Periodicity , Acoustic Stimulation/methods , Brain/physiology
16.
Int J Psychophysiol ; 172: 24-38, 2022 02.
Article in English | MEDLINE | ID: mdl-34968581

ABSTRACT

The proposal to use brain connectivity as a biomarker for dementia phenotyping can be potentiated by conducting large-scale multicentric studies using high-density electroencephalography (hd- EEG). Nevertheless, several barriers preclude the development of a systematic "ConnEEGtome" in dementia research. Here we review critical sources of variability in EEG connectivity studies, and provide general guidelines for multicentric protocol harmonization. We describe how results can be impacted by the choice for data acquisition, and signal processing workflows. The implementation of a particular processing pipeline is conditional upon assumptions made by researchers about the nature of EEG. Due to these assumptions, EEG connectivity metrics are typically applicable to restricted scenarios, e.g., to a particular neurocognitive disorder. "Ground truths" for the choice of processing workflow and connectivity analysis are impractical. Consequently, efforts should be directed to harmonizing experimental procedures, data acquisition, and the first steps of the preprocessing pipeline. Conducting multiple analyses of the same data and a proper integration of the results need to be considered in additional processing steps. Furthermore, instead of using a single connectivity measure, using a composite metric combining different connectivity measures brings a powerful strategy to scale up the replicability of multicentric EEG connectivity studies. These composite metrics can boost the predictive strength of diagnostic tools for dementia. Moreover, the implementation of multi-feature machine learning classification systems that include EEG-based connectivity analyses may help to exploit the potential of multicentric studies combining clinical-cognitive, molecular, genetics, and neuroimaging data towards a multi-dimensional characterization of the dementia.


Subject(s)
Dementia , Electroencephalography , Brain , Electroencephalography/methods , Humans , Neuroimaging , Signal Processing, Computer-Assisted
17.
Biol Psychiatry ; 92(1): 54-67, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35491275

ABSTRACT

BACKGROUND: The predictive coding theory of allostatic-interoceptive load states that brain networks mediating autonomic regulation and interoceptive-exteroceptive balance regulate the internal milieu to anticipate future needs and environmental demands. These functions seem to be distinctly compromised in behavioral variant frontotemporal dementia (bvFTD), including alterations of the allostatic-interoceptive network (AIN). Here, we hypothesize that bvFTD is typified by an allostatic-interoceptive overload. METHODS: We assessed resting-state heartbeat evoked potential (rsHEP) modulation as well as its behavioral and multimodal neuroimaging correlates in patients with bvFTD relative to healthy control subjects and patients with Alzheimer's disease (N = 94). We measured 1) resting-state electroencephalography (to assess the rsHEP, prompted by visceral inputs and modulated by internal body sensing), 2) associations between rsHEP and its neural generators (source location), 3) cognitive disturbances (cognitive state, executive functions, facial emotion recognition), 4) brain atrophy, and 5) resting-state functional magnetic resonance imaging functional connectivity (AIN vs. control networks). RESULTS: Relative to healthy control subjects and patients with Alzheimer's disease, patients with bvFTD presented more negative rsHEP amplitudes with sources in critical hubs of the AIN (insula, amygdala, somatosensory cortex, hippocampus, anterior cingulate cortex). This exacerbated rsHEP modulation selectively predicted the patients' cognitive profile (including cognitive decline, executive dysfunction, and emotional impairments). In addition, increased rsHEP modulation in bvFTD was associated with decreased brain volume and connectivity of the AIN. Machine learning results confirmed AIN specificity in predicting the bvFTD group. CONCLUSIONS: Altogether, these results suggest that bvFTD may be characterized by an allostatic-interoceptive overload manifested in ongoing electrophysiological markers, brain atrophy, functional networks, and cognition.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Alzheimer Disease/pathology , Atrophy/pathology , Brain , Brain Mapping , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Humans , Magnetic Resonance Imaging
18.
J Speech Lang Hear Res ; 65(8): 2881-2895, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35930680

ABSTRACT

PURPOSE: This exploratory study aims to investigate variations in voice production in the presence of background noise (Lombard effect) in individuals with nonphonotraumatic vocal hyperfunction (NPVH) and individuals with typical voices using acoustic, aerodynamic, and vocal fold vibratory measures of phonatory function. METHOD: Nineteen participants with NPVH and 19 participants with typical voices produced simple vocal tasks in three sequential background conditions: baseline (in quiet), Lombard (in noise), and recovery (5 min after removing the noise). The Lombard condition consisted of speech-shaped noise at 80 dB SPL through audiometric headphones. Acoustic measures from a microphone, glottal aerodynamic parameters estimated from the oral airflow measured with a circumferentially vented pneumotachograph mask, and vocal fold vibratory parameters from high-speed videoendoscopy were analyzed. RESULTS: During the Lombard condition, both groups exhibited a decrease in open quotient and increases in sound pressure level, peak-to-peak glottal airflow, maximum flow declination rate, and subglottal pressure. During the recovery condition, the acoustic and aerodynamic measures of individuals with typical voices returned to those of the baseline condition; however, recovery measures for individuals with NPVH did not return to baseline values. CONCLUSIONS: As expected, individuals with NPVH and participants with typical voices exhibited a Lombard effect in the presence of elevated background noise levels. During the recovery condition, individuals with NPVH did not return to their baseline state, pointing to a persistence of the Lombard effect after noise removal. This behavior could be related to disruptions in laryngeal motor control and may play a role in the etiology of NPVH. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.20415600.


Subject(s)
Vocal Cords , Voice , Acoustics , Glottis , Humans , Phonation
19.
J Med Primatol ; 39(3): 177-86, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20345770

ABSTRACT

BACKGROUND: The purpose of this study is to better characterize the hematological, biochemical, respiratory, cardiovascular and electroneurophysiological parameters in young adult Cercopithecus aethiops sabaeus of both sexes. The rhesus and cynomolgus monkeys are widely used as experimental primate models. However, only few articles have been published testing toxicological effects of pharmaceuticals on African green monkey. METHODS: The present study was carried out with the recompilation of all parameters recorded before the first drug administration in five sub-chronic or chronic toxicological studies performed on 66 Cercopithecus aethiops sabaeus, born in Cuba. RESULTS: This study provides hematological, biochemical, respiratory, cardiovascular and electroneurophysiological data for both choosing animals to be included into experiments and monitoring these parameters during the study. CONCLUSIONS: We conclude that this study provides valuable integrated data for determining the health status, including electroneurophysiological parameters, data not previously reported for this species, of the African green monkey.


Subject(s)
Chlorocebus aethiops/physiology , Disease Models, Animal , Animals , Drug Evaluation, Preclinical , Evoked Potentials , Female , Male , Toxicity Tests , Vital Signs
20.
IEEE Trans Neural Syst Rehabil Eng ; 27(5): 1043-1052, 2019 05.
Article in English | MEDLINE | ID: mdl-30908260

ABSTRACT

A physiologically-based scheme that incorporates inherent neurological fluctuations in the activation of intrinsic laryngeal muscles into a lumped-element vocal fold model is proposed. Herein, muscles are activated through a combination of neural firing rate and recruitment of additional motor units, both of which have stochastic components. The mathematical framework and underlying physiological assumptions are described, and the effects of the fluctuations are tested via a parametric analysis using a body-cover model of the vocal folds for steady-state sustained vowels. The inherent muscle activation fluctuations have a bandwidth that varies with the firing rate, yielding both low and high-frequency components. When applying the proposed fluctuation scheme to the voice production model, changes in the dynamics of the system can be observed, ranging from fluctuations in the fundamental frequency to unstable behavior near bifurcation regions. The resulting coefficient of variation of the model parameters is not uniform with muscle activation. The stochastic components of muscle activation influence both the fine structure variability and the ability to achieve a target value for pitch control. These components can have a significant impact on the vocal fold parameters, as well as the outputs of the voice production model. Good agreement was found when contrasting the proposed scheme with prior experimental studies accounting for variability in vocal fold posturing and spectral characteristics of the muscle activation signal. The proposed scheme constitutes a novel and physiologically-based approach for controlling lumped-element models for normal voice production and can be extended to explore neuropathological conditions.


Subject(s)
Laryngeal Muscles/physiology , Vocal Cords/physiology , Algorithms , Computer Simulation , Electromyography , Electrophysiological Phenomena , Humans , Laryngeal Muscles/innervation , Models, Theoretical , Motor Neurons/physiology , Muscle Cells/physiology , Stochastic Processes , Vocal Cords/innervation , Voice
SELECTION OF CITATIONS
SEARCH DETAIL