Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Radiographics ; 43(12): e230071, 2023 12.
Article in English | MEDLINE | ID: mdl-37971934

ABSTRACT

A diverse spectrum of pathologically distinct, nonneoplastic, proliferative conditions of the kidneys and urinary tract demonstrate a expansile growth pattern similar to that of neoplasms. The renal pseudotumors include myriad causes of infections as well as rare noninfectious causes such as sarcoidosis, amyloidosis, and immunoglobulin G4-related disease (IgG4-RD). Rare entities such as cystitis cystica, endometriosis, nephrogenic adenoma, and pseudosarcomatous myofibroblastic proliferation and distinct types of prostatitis comprise tumefactive nontumorous disorders that affect specific segments of the urinary tract. The pseudotumors of the kidneys and urinary tract demonstrate characteristic histopathologic and epidemiologic features, as well as protean clinical manifestations, natural history, and imaging findings. Many patients present with genitourinary tract-specific symptoms or systemic disease. Some cases may be incidentally discovered at imaging. Some entities such as perinephric myxoid pseudotumors, IgG4-RD, fibroepithelial polyp, and nephrogenic adenoma display specific anatomic localization and disease distribution. Imaging features of multisystem disorders such as tuberculosis, sarcoidosis, and IgG4-RD provide supportive evidence that may allow precise diagnosis. Fungal pyelonephritis, xanthogranulomatous pyelonephritis, IgG4-RD, actinomycosis, and endometriosis show markedly low signal intensity on T2-weighted MR images. Although some pseudotumors exhibit characteristic imaging findings that permit correct diagnosis, laboratory correlation and histopathologic confirmation are required for definitive characterization in most cases. A high index of suspicion is a prerequisite for diagnosis. Accurate diagnosis is critical for instituting optimal management while preventing use of inappropriate therapies or interventions. Surveillance CT and MRI are frequently used for monitoring the response of pseudotumors to therapy. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.


Subject(s)
Adenoma , Endometriosis , Immunoglobulin G4-Related Disease , Sarcoidosis , Male , Female , Humans , Kidney/diagnostic imaging , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed
2.
Radiographics ; 43(3): e220128, 2023 03.
Article in English | MEDLINE | ID: mdl-36757881

ABSTRACT

A diverse spectrum of benign entities and malignant neoplasms originate from the monotonous mesothelium that lines the serosal membranes of the pleural, pericardial, and peritoneal cavities. The mesothelium of myriad sites shows a common origin from the lateral plate mesoderm; primary mesothelial tumors thus demonstrate similar pathogenesis, imaging findings, and treatment options. Significant changes have been made in the 2021 World Health Organization (WHO) classification schemata of the pleural and pericardial tumors on the basis of recent advances in pathology and genetics. While malignant mesotheliomas are biologically aggressive malignancies that occur primarily in patients exposed to asbestos with attendant poor survival rates, well-differentiated papillary mesothelial tumors and adenomatoid tumors charter a benign clinical course with an excellent prognosis. Mesothelioma in situ is a newly characterized entity represented by recurrent unexplained pleural effusions without any identifiable mass at imaging or thoracoscopy. Immunohistochemical markers based on BAP1, MTAP, CDKN2A, and TRAF7 gene mutations help differentiate diffuse mesotheliomas from benign mesothelial proliferations and localized mesotheliomas. Cross-sectional imaging modalities, including US, CT, MRI, and fluorine 18-fluorodeoxyglucose (FDG) PET/CT, permit diagnosis and play a major role in staging and assessing surgical resectability. Imaging studies are invaluable in providing noninvasive and quantitative assessment of tumor response in patients with unresectable disease. Owing to significant overlap in patient characteristics and pathomorphology, accurate diagnosis based on advanced histopathology techniques and genetic abnormalities is imperative for optimal management and prognostication. While patients with nonepithelioid pleural mesotheliomas benefit from immunotherapy, novel targeted therapies for CDKN2A-, NF2-, and BAP1-altered mesotheliomas are under consideration. © RSNA, 2023 Quiz questions for this article are available through the Online Learning Center.


Subject(s)
Adenomatoid Tumor , Mesothelioma, Malignant , Mesothelioma , Neoplasms, Mesothelial , Pleural Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Mesothelioma/diagnostic imaging , Mesothelioma/therapy , Pleural Neoplasms/pathology , Biomarkers, Tumor
3.
Radiographics ; 43(6): e220172, 2023 06.
Article in English | MEDLINE | ID: mdl-37227946

ABSTRACT

Wunderlich syndrome (WS), which was named after Carl Wunderlich, is a rare clinical syndrome characterized by an acute onset of spontaneous renal hemorrhage into the subcapsular, perirenal, and/or pararenal spaces, without a history of antecedent trauma. Patients may present with a multitude of symptoms ranging from nonspecific flank or abdominal pain to serious manifestations such as hypovolemic shock. The classic symptom complex of flank pain, a flank mass, and hypovolemic shock referred to as the Lenk triad is seen in a small subset of patients. Renal neoplasms such as angiomyolipomas and clear cell renal cell carcinomas that display an increased proclivity for hemorrhage and rupture contribute to approximately 60%-65% of all cases of WS. A plethora of renal vascular diseases (aneurysms or pseudoaneurysms, arteriovenous malformations or fistulae, renal vein thrombosis, and vasculitis syndromes) account for 20%-30% of cases of WS. Rare causes of WS include renal infections, cystic diseases, calculi, kidney failure, and coagulation disorders. Cross-sectional imaging modalities, particularly multiphasic CT or MRI, are integral to the detection, localization, and characterization of the underlying causes and facilitate optimal management. However, large-volume hemorrhage at patient presentation may obscure underlying causes, particularly neoplasms. If the initial CT or MRI examination shows no contributary causes, a dedicated CT or MRI follow-up study may be warranted to establish the cause of WS. Renal arterial embolization is a useful, minimally invasive, therapeutic option in patients who present with acute or life-threatening hemorrhage and can help avoid emergency radical surgery. Accurate diagnosis of the underlying cause of WS is critical for optimal patient treatment in emergency and nonemergency clinical settings. ©RSNA, 2023 Quiz questions for this article are available through the Online Learning Center.


Subject(s)
Kidney Neoplasms , Shock , Humans , Follow-Up Studies , Kidney Neoplasms/complications , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/therapy , Kidney/diagnostic imaging , Hemorrhage/diagnostic imaging , Hemorrhage/etiology , Hemorrhage/therapy
4.
Radiographics ; 42(3): 759-777, 2022.
Article in English | MEDLINE | ID: mdl-35452341

ABSTRACT

There is a wide spectrum of hereditary and acquired immunodeficiency disorders that are characterized by specific abnormalities involving a plethora of humoral, cellular, and phagocytic immunologic pathways. These include distinctive primary immunodeficiency syndromes due to characteristic genetic defects and secondary immunodeficiency syndromes, such as AIDS from HIV infection and therapy-related immunosuppression in patients with cancers or a solid organ or stem cell transplant. The gut mucosa and gut-associated lymphoid tissue (the largest lymphoid organ in the body), along with diverse commensal microbiota, play complex and critical roles in development and modulation of the immune system. Thus, myriad gastrointestinal (GI) symptoms are common in immunocompromised patients and may be due to inflammatory conditions (graft versus host disease, neutropenic enterocolitis, or HIV-related proctocolitis), opportunistic infections (viral, bacterial, fungal, or protozoal), or malignancies (Kaposi sarcoma, lymphoma, posttransplant lymphoproliferative disorder, or anal cancer). GI tract involvement in immunodeficient patients contributes to significant morbidity and mortality. Along with endoscopy and histopathologic evaluation, imaging plays an integral role in detection, localization, characterization, and distinction of GI tract manifestations of various immunodeficiency syndromes and their complications. Select disorders demonstrate characteristic findings at fluoroscopy, CT, US, and MRI that permit timely and accurate diagnosis. While neutropenic enterocolitis affects the terminal ileum and right colon and occurs in patients receiving chemotherapy for hematologic malignancies, Kaposi sarcoma commonly manifests as bull's-eye lesions in the stomach and duodenum. Imaging is invaluable in treatment follow-up and long-term surveillance as well. Online supplemental material is available for this article. ©RSNA, 2022.


Subject(s)
Acquired Immunodeficiency Syndrome , Enterocolitis, Neutropenic , Gastrointestinal Diseases , Gastrointestinal Neoplasms , HIV Infections , Sarcoma, Kaposi , Acquired Immunodeficiency Syndrome/complications , Duodenum , Enterocolitis, Neutropenic/complications , Gastrointestinal Diseases/diagnostic imaging , Gastrointestinal Diseases/etiology , Gastrointestinal Neoplasms/pathology , HIV Infections/complications , Humans , Sarcoma, Kaposi/diagnosis , Sarcoma, Kaposi/etiology , Sarcoma, Kaposi/pathology
5.
Radiographics ; 42(5): 1338-1357, 2022.
Article in English | MEDLINE | ID: mdl-35776676

ABSTRACT

Hepatocellular adenomas (HCAs), hepatocellular carcinomas (HCCs), and intrahepatic cholangiocarcinomas (iCCAs) are a highly heterogeneous group of liver tumors with diverse pathomolecular features and prognoses. High-throughput gene sequencing techniques have allowed discovery of distinct genetic and molecular underpinnings of these tumors and identified distinct subtypes that demonstrate varied clinicobiologic behaviors, imaging findings, and complications. The combination of histopathologic findings and molecular profiling form the basis for the morphomolecular classification of liver tumors. Distinct HCA subtypes with characteristic imaging findings and complications include HNF1A-inactivated, inflammatory, ß-catenin-activated, ß-catenin-activated inflammatory, and sonic hedgehog HCAs. HCCs can be grouped into proliferative and nonproliferative subtypes. Proliferative HCCs include macrotrabecular-massive, TP53-mutated, scirrhous, clear cell, fibrolamellar, and sarcomatoid HCCs and combined HCC-cholangiocarcinoma. Steatohepatitic and ß-catenin-mutated HCCs constitute the nonproliferative subtypes. iCCAs are classified as small-duct and large-duct types on the basis of the level of bile duct involvement, with significant differences in pathogenesis, molecular signatures, imaging findings, and biologic behaviors. Cross-sectional imaging modalities, including multiphase CT and multiparametric MRI, play an essential role in diagnosis, staging, treatment response assessment, and surveillance. Select imaging phenotypes can be correlated with genetic abnormalities, and identification of surrogate imaging markers may help avoid genetic testing. Improved understanding of morphomolecular features of liver tumors has opened new areas of research in the targeted therapeutics and management guidelines. The purpose of this article is to review imaging findings of select morphomolecular subtypes of HCAs, HCCs, and iCCAs and discuss therapeutic and prognostic implications. Online supplemental material is available for this article. ©RSNA, 2022.


Subject(s)
Adenoma, Liver Cell , Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Adenoma, Liver Cell/genetics , Adenoma, Liver Cell/pathology , Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/metabolism , Cholangiocarcinoma/diagnostic imaging , Cholangiocarcinoma/pathology , Hedgehog Proteins/metabolism , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , beta Catenin/genetics
6.
Radiographics ; 42(2): 417-432, 2022.
Article in English | MEDLINE | ID: mdl-35030067

ABSTRACT

There is a wide spectrum of benign and malignant mesenchymal neoplasms of the prostate, which account for less than 1% of all prostatic tumors. These include distinctive tumors that arise from the specialized prostatic stroma and site-agnostic neoplasms such as smooth muscle tumors, fibrous or myofibroblastic neoplasms, neurogenic tumors, vascular tumors, and a plethora of sarcomas. Select tumors show classic sites of origin within the prostate. While stromal tumors of uncertain malignant potential (STUMPs) commonly involve the peripheral zone at the prostate base, leiomyomas typically originate from the central prostate toward the apex. Some "prostatic" neoplasms such as gastrointestinal stromal tumors, solitary fibrous tumor (SFT), paragangliomas, and neurogenic tumors arise primarily from periprostatic soft tissues. Most mesenchymal tumors of the prostate and seminal vesicles manifest as large tumors that cause nonspecific symptoms; prostate-specific antigen level is not typically elevated. Diverse mesenchymal neoplasms demonstrate characteristic histopathologic and immunocytochemical features and variable cross-sectional imaging findings. While leiomyoma and SFT typically display low signal intensity on T2-weighted images, synovial sarcomas commonly show hemorrhage. Diagnosis is difficult because of the rarity and lack of awareness of the tumors and the significant overlap in histopathologic features. Select tumors show characteristic genetic abnormalities that allow the diagnosis to be established. For example, more than 90% of SFTs are characterized by a unique NAB2-STAT6 gene fusion, and more than 95% of synovial sarcomas are associated with a distinctive SYT-SSX chimeric transcript. Accurate diagnosis is imperative for optimal management owing to markedly different tumor biology as well as attendant therapeutic and prognostic implications. While STUMPs commonly recur, sarcomas typically charter an aggressive course with poor prognosis. Online supplemental material is available for this article. ©RSNA, 2022.


Subject(s)
Prostate , Solitary Fibrous Tumors , Biomarkers, Tumor/genetics , Diagnosis, Differential , Humans , Male , Neoplasm Recurrence, Local , Prostate/diagnostic imaging , Prostate/pathology , Seminal Vesicles/diagnostic imaging , Seminal Vesicles/pathology , Solitary Fibrous Tumors/pathology
7.
J Comput Assist Tomogr ; 46(5): 676-681, 2022.
Article in English | MEDLINE | ID: mdl-35759779

ABSTRACT

ABSTRACT: Also referred to as "osteoclast-rich, clear cell sarcoma-like tumor of the gastrointestinal tract (CCSLGT)," malignant gastrointestinal neuroectodermal tumor is a newly described, rare, aggressive sarcoma that commonly arises in the small bowel, stomach, and colon. Histogenesis is likely from an autonomous nervous system-related primitive cell of neural crest origin. The hallmark genetic finding of EWS-CREB1 or EWS-ATF1 fusion transcripts clinches the diagnosis. Annular constrictive lesions tend to be smaller, show homogenous contrast enhancement on computed tomography, and may present with bowel obstruction. Larger, expansile masses tend to be exophytic and show heterogeneous contrast enhancement. Surgical resection is the mainstay of treatment. Frequent recurrences, metastases, and death from disease in 75% of patients portend a poor prognosis. Targeted chemotherapy based on specific tumor pathways is being developed.


Subject(s)
Gastrointestinal Neoplasms , Neuroectodermal Tumors , Sarcoma, Clear Cell , Soft Tissue Neoplasms , Gastrointestinal Neoplasms/diagnostic imaging , Gastrointestinal Neoplasms/pathology , Humans , Neuroectodermal Tumors/diagnostic imaging , Neuroectodermal Tumors/pathology , Sarcoma, Clear Cell/genetics , Sarcoma, Clear Cell/pathology
8.
J Am Soc Nephrol ; 32(1): 99-114, 2021 01.
Article in English | MEDLINE | ID: mdl-33288630

ABSTRACT

BACKGROUND: C3 glomerulopathy (C3G) is characterized by the alternative-pathway (AP) hyperactivation induced by nephritic factors or complement gene mutations. Mice deficient in complement factor H (CFH) are a classic C3G model, with kidney disease that requires several months to progress to renal failure. Novel C3G models can further contribute to understanding the mechanism behind this disease and developing therapeutic approaches. METHODS: A novel, rapidly progressing, severe, murine model of C3G was developed by replacing the mouse C3 gene with the human C3 homolog using VelociGene technology. Functional, histologic, molecular, and pharmacologic assays characterize the presentation of renal disease and enable useful pharmacologic interventions in the humanized C3 (C3hu/hu) mice. RESULTS: The C3hu/hu mice exhibit increased morbidity early in life and die by about 5-6 months of age. The C3hu/hu mice display elevated biomarkers of kidney dysfunction, glomerulosclerosis, C3/C5b-9 deposition, and reduced circulating C3 compared with wild-type mice. Administration of a C5-blocking mAb improved survival rate and offered functional and histopathologic benefits. Blockade of AP activation by anti-C3b or CFB mAbs also extended survival and preserved kidney function. CONCLUSIONS: The C3hu/hu mice are a useful model for C3G because they share many pathologic features consistent with the human disease. The C3G phenotype in C3hu/hu mice may originate from a dysregulated interaction of human C3 protein with multiple mouse complement proteins, leading to unregulated C3 activation via AP. The accelerated disease course in C3hu/hu mice may further enable preclinical studies to assess and validate new therapeutics for C3G.


Subject(s)
Complement C3/genetics , Disease Models, Animal , Glomerulonephritis, Membranoproliferative/genetics , Kidney Diseases/genetics , Animals , Complement C3/metabolism , Complement Pathway, Alternative/genetics , Exons , Gene Expression Regulation , Glomerulonephritis, Membranoproliferative/metabolism , Humans , Kidney Diseases/metabolism , Liver/metabolism , Male , Mice , Mice, Knockout , Microscopy, Fluorescence , Phenotype , Polymorphism, Single Nucleotide , Renal Insufficiency/genetics , Renal Insufficiency/metabolism
9.
Radiographics ; 41(6): 1698-1716, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34597218

ABSTRACT

Testicular germ cell tumors (TGCTs) demonstrate a wide variety of histopathologic, genetic, pathogenetic, and immunocytochemical characteristics and various clinical-biologic profiles and prognoses. Most TGCTs arise from an intratubular precursor cell referred to as germ cell neoplasia in situ (GCNIS), which is an embryonic germ cell with the potential to differentiate into a plethora of embryonic and extraembryonic lineages. Advances in pathologic examination and genetics paved the way for the 2016 World Health Organization (WHO) classification system, which recognizes two pathogenetically distinct groups of TGCTs. Although postpubertal tumors originate from GCNIS, almost all prepubertal tumors belong to the non-GCNIS category. Molecular testing for chromosome 12p amplification helps to distinguish the two tumor categories. Imaging techniques such as US, CT, MRI, and fluorine 18 (18F)-fluorodeoxyglucose PET/CT are pivotal to the diagnosis and staging, evaluation of complications and treatment response, and long-term surveillance of TGCTs. In addition, select MRI findings may help to differentiate a seminoma from a nonseminomatous mixed TGCT. Accurate diagnosis of TGCTs has therapeutic and prognostic implications. Although seminomas show exquisite response to chemotherapy and radiation therapy, postpubertal teratomas are highly resistant to both. The 2016 WHO classification system introduced changes in the diagnosis and management of TGCTs, including the development of new treatment and follow-up guidelines. Radiologists play an essential role in the optimal treatment of patients with TGCTs. Online supplemental material is available for this article. ©RSNA, 2021.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Seminoma , Testicular Neoplasms , Humans , Male , Neoplasms, Germ Cell and Embryonal/diagnostic imaging , Neoplasms, Germ Cell and Embryonal/therapy , Positron Emission Tomography Computed Tomography , Testicular Neoplasms/diagnostic imaging , Testicular Neoplasms/therapy
10.
Radiographics ; 41(6): 1592-1610, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34597230

ABSTRACT

Cystic hepatobiliary neoplasms with mucin-producing epithelium-mucinous cystic neoplasm of the liver (MCN) and intraductal papillary neoplasm of the bile duct (IPNB)-are rare and distinct entities that have unique clinical, pathologic, and imaging features. They are differentiated pathologically by the presence of subepithelial ovarian-like hypercellular stroma (OLS), which is the defining histopathologic feature of MCN. MCN is commonly a benign, large, solitary, symptomatic, multiloculated cystic mass without biliary communication that occurs in middle-aged women. On the other hand, IPNBs are a heterogeneous spectrum of tumors, which are commonly associated with invasive carcinoma, occur in older patients, and can be differentiated from MCN by communication with the biliary tree, intraductal masses, associated biliary ductal dilatation, and absent OLS. Understanding of these rare neoplasms has grown and evolved over time and continues to today, but uncertainty and controversy persist, related to the rarity of these tumors, relatively recent designation as separate entities, inherent clinicopathologic heterogeneity, overlapping imaging features, and the fact that many prior studies likely included MCN and cystic IPNB together as a single entity. Confusion regarding these neoplasms is evident by historical inconsistencies and nonstandardized nomenclature through the years. Awareness of these entities is important for the interpreting radiologist to suggest a particular diagnosis or generate a meaningful differential diagnosis in the appropriate setting, and is of particular significance as MCN and cystic IPNB have overlapping imaging features with other more common hepatobiliary cystic masses but have different management and prognosis. Online supplemental material is available for this article. Work of the U.S. Government published under an exclusive license with the RSNA.


Subject(s)
Bile Duct Neoplasms , Gastrointestinal Neoplasms , Pancreatic Neoplasms , Aged , Bile Duct Neoplasms/diagnostic imaging , Diagnosis, Differential , Female , Humans , Middle Aged , Mucins , Prognosis
11.
Radiographics ; 41(3): 876-894, 2021.
Article in English | MEDLINE | ID: mdl-33891523

ABSTRACT

A wide spectrum of second cancers occur as late complications of radiation therapy (RT) used to treat various malignancies. In addition to the type and dose of radiation, lifestyle, environmental, and genetic factors are important to the development of second malignancies in cancer survivors. Typically, RT-induced malignancies (RTIMs) are biologically aggressive cancers with a variable period of 5-10 years for hematologic malignancies and 10-60 years for solid tumors between RT and the development of the second cancer. Although carcinomas and leukemias commonly develop after low-dose RT, sarcomas occur in tissues or organs that receive high-dose RT. Angiosarcomas and unclassified pleomorphic sarcomas are the two most common RT-associated sarcomas; other sarcomas include malignant peripheral nerve sheath tumors, leiomyosarcomas, osteosarcomas, chondrosarcomas, and dedifferentiated or pleomorphic liposarcomas. Select RTIMs show tumor genetic characteristics that allow accurate diagnosis. Nearly all cutaneous angiosarcomas after RT for breast cancer and 90% of RT-associated malignant peripheral nerve sheath tumors are characterized by MYC gene amplifications and loss of H3 K27me3 expression, respectively. Classic papillary thyroid carcinomas that develop after RT frequently harbor RET/PTC rearrangements and have a favorable prognosis, despite their advanced stage at patient presentation. Select RTIMs demonstrate characteristic imaging findings and typically develop in the prior radiation field. Imaging is essential to early diagnosis, characterization, localization, and staging of RTIMs. Familiarity of radiologists with the diverse spectrum of RTIMs is essential for early diagnosis and optimal management. An invited commentary by Shapiro is available online. ©RSNA, 2021.


Subject(s)
Leiomyosarcoma , Neoplasms, Radiation-Induced , Neoplasms, Second Primary , Sarcoma , Soft Tissue Neoplasms , Humans , Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/genetics , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/genetics
12.
Radiographics ; 41(4): 1082-1102, 2021.
Article in English | MEDLINE | ID: mdl-34143711

ABSTRACT

A wide spectrum of hereditary syndromes predispose patients to distinct pancreatic abnormalities, including cystic lesions, recurrent pancreatitis, ductal adenocarcinoma, nonductal neoplasms, and parenchymal iron deposition. While pancreatic exocrine insufficiency and recurrent pancreatitis are common manifestations in cystic fibrosis and hereditary pancreatitis, pancreatic cysts are seen in von Hippel-Lindau disease, cystic fibrosis, autosomal dominant polycystic kidney disease, and McCune-Albright syndrome. Ductal adenocarcinoma can be seen in many syndromes, including Peutz-Jeghers syndrome, familial atypical multiple mole melanoma syndrome, Lynch syndrome, hereditary breast and ovarian cancer syndrome, Li-Fraumeni syndrome, and familial pancreatic cancer syndrome. Neuroendocrine tumors are commonly seen in multiple endocrine neoplasia type 1 syndrome and von Hippel-Lindau disease. Pancreatoblastoma is an essential component of Beckwith-Wiedemann syndrome. Primary hemochromatosis is characterized by pancreatic iron deposition. Pancreatic pathologic conditions associated with genetic syndromes exhibit characteristic imaging findings. Imaging plays a pivotal role in early detection of these conditions and can positively affect the clinical outcomes of those at risk for pancreatic malignancies. Awareness of the characteristic imaging features, imaging-based screening protocols, and surveillance guidelines is crucial for radiologists to guide appropriate patient management. ©RSNA, 2021.


Subject(s)
Multiple Endocrine Neoplasia Type 1 , Neoplastic Syndromes, Hereditary , Pancreatic Neoplasms , Genetic Predisposition to Disease , Humans , Neoplastic Syndromes, Hereditary/diagnostic imaging , Neoplastic Syndromes, Hereditary/genetics , Pancreas , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/genetics
13.
J Comput Assist Tomogr ; 45(6): 805-811, 2021.
Article in English | MEDLINE | ID: mdl-34270486

ABSTRACT

ABSTRACT: The applications of machine learning in clinical radiology practice and in particular oncologic imaging practice are steadily evolving. However, there are several potential hurdles for widespread implementation of machine learning in oncologic imaging, including the lack of availability of a large number of annotated data sets and lack of use of consistent methodology and terminology for reporting the findings observed on the staging and follow-up imaging studies that apply to a wide spectrum of solid tumors. This short review discusses some potential hurdles to the implementation of machine learning in oncologic imaging, opportunities for improvement, and potential solutions that can facilitate robust machine learning from the vast number of radiology reports and annotations generated by the dictating radiologists.


Subject(s)
Abdominal Neoplasms/diagnostic imaging , Diagnostic Imaging/methods , Image Interpretation, Computer-Assisted/methods , Machine Learning , Abdomen/diagnostic imaging , Humans
14.
Radiographics ; 40(6): 1600-1626, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33001791

ABSTRACT

Technologic advances in chromosomal analysis and DNA sequencing have enabled genome-wide analysis of cancer cells, yielding considerable data on the genetic basis of malignancies. Evolving knowledge of tumor genetics and oncologic pathways has led to a better understanding of histopathologic features, tumor classification, tumor biologic characteristics, and imaging findings and discovery of targeted therapeutic agents. Radiogenomics is a rapidly evolving field of imaging research aimed at correlating imaging features with gene mutations and gene expression patterns, and it may provide surrogate imaging biomarkers that may supplant genetic tests and be used to predict treatment response and prognosis and guide personalized treatment options. Multidetector CT, multiparametric MRI, and PET with use of multiple radiotracers are some of the imaging techniques commonly used to assess radiogenomic associations. Select abdominal malignancies demonstrate characteristic imaging features that correspond to gene mutations. Recent advances have enabled us to understand the genetics of steatotic and nonsteatotic hepatocellular adenomas, a plethora of morphologic-molecular subtypes of hepatic malignancies, a variety of clear cell and non-clear cell renal cell carcinomas, a myriad of hereditary and sporadic exocrine and neuroendocrine tumors of the pancreas, and the development of targeted therapeutic agents for gastrointestinal stromal tumors based on characteristic KIT gene mutations. Mutations associated with aggressive phenotypes of these malignancies can sometimes be predicted on the basis of their imaging characteristics. Radiologists should be familiar with the genetics and pathogenesis of common cancers that have associated imaging biomarkers, which can help them be integral members of the cancer management team and guide clinicians and pathologists. Online supplemental material is available for this article. ©RSNA, 2020 See discussion on this article by Luna (pp 1627-1630).


Subject(s)
Abdominal Neoplasms/diagnostic imaging , Abdominal Neoplasms/genetics , Biomarkers, Tumor/genetics , Genes, Neoplasm/genetics , Genomics/methods , Genetic Predisposition to Disease , Humans , Mutation , Phenotype
15.
Radiographics ; 40(5): 1240-1262, 2020.
Article in English | MEDLINE | ID: mdl-32795239

ABSTRACT

Pancreatic neuroendocrine neoplasms (panNENs) are heterogeneous neoplasms with neuroendocrine differentiation that show characteristic clinical, histomorphologic, and prognostic features; genetic alterations; and biologic behavior. Up to 10% of panNENs develop in patients with syndromes that predispose them to cancer, such as multiple endocrine neoplasia type 1, von Hippel-Lindau disease, tuberous sclerosis complex, neurofibromatosis type 1, and glucagon cell adenomatosis. PanNENs are classified as either functioning tumors, which manifest early because of clinical symptoms related to increased hormone production, or nonfunctioning tumors, which often manifest late because of mass effect. PanNENs are histopathologically classified as well-differentiated pancreatic neuroendocrine tumors (panNETs) or poorly differentiated pancreatic neuroendocrine carcinomas (panNECs) according to the 2010 World Health Organization (WHO) classification system. Recent advances in cytogenetics and molecular biology have shown substantial heterogeneity in panNECs, and a new tumor subtype, well-differentiated, high-grade panNET, has been introduced. High-grade panNETs and panNECs are two distinct entities with different pathogenesis, clinical features, imaging findings, treatment options, and prognoses. The 2017 WHO classification system and the eighth edition of the American Joint Committee on Cancer staging system include substantial changes. Multidetector CT, MRI, and endoscopic US help in anatomic localization of the primary tumor, local-regional spread, and metastases. Somatostatin receptor scintigraphy and fluorine 18-fluorodeoxyglucose PET/CT are helpful for functional and metabolic assessment. Knowledge of recent updates in the pathogenesis, classification, and staging of panNENs and familiarity with their imaging findings allow optimal patient treatment. ©RSNA, 2020.


Subject(s)
Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Diagnosis, Differential , Humans , Mutation , Neoplasm Grading , Neoplasm Staging , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Prognosis
16.
Radiographics ; 39(5): 1280-1301, 2019.
Article in English | MEDLINE | ID: mdl-31373866

ABSTRACT

Hereditary gastrointestinal (GI) cancer syndromes due to specific germline mutations are characterized by an increased risk of GI tract malignancies, extra-GI tract cancers, and benign abnormalities. These syndromes include Lynch syndrome, familial adenomatous polyposis, juvenile polyposis syndrome, Peutz-Jeghers syndrome, Cowden syndrome, hereditary diffuse gastric cancer, and hereditary pancreatic cancer. Timely identification of the responsible genes will help predict future cancer risks in these patients and their family members. Early detection of cancers is possible with appropriate screening methods; risk-reducing measures will help in cancer prevention. Select malignancies and benign conditions associated with these syndromes have distinctive imaging features that can aid in classifying the syndromes. Imaging also plays a pivotal role in screening and surveillance of patients as well as their at-risk relatives and is invaluable for follow-up of treated malignancies. The American College of Gastroenterology has established specific guidelines for diagnosis and management of hereditary GI cancer syndromes. Knowledge of the imaging features of various pathologic conditions and screening strategies will guide appropriate management of patients and at-risk family members. ©RSNA, 2019.


Subject(s)
Gastrointestinal Neoplasms/diagnostic imaging , Neoplastic Syndromes, Hereditary/diagnostic imaging , Early Detection of Cancer , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/therapy , Genetic Predisposition to Disease , Humans , Mass Screening , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/therapy , Practice Guidelines as Topic
17.
Radiographics ; 39(3): 759-778, 2019.
Article in English | MEDLINE | ID: mdl-31059391

ABSTRACT

Recent advances in pathology and genetics have improved our understanding of the pathogenesis of inherited and sporadic malignancies. Detailed studies of hereditary cancer syndromes-which contribute to 5%-10% of the overall cancer burden-have shed new light on the important role of genetic abnormalities in tumor metabolism, oncologic pathways, and clinicobiologic behavior. Many inherited cancer syndromes are characterized by development of pathognomonic histotypes of neoplasms in specific target organs. Cross-sectional imaging plays an integral role in diagnosis, screening, surveillance, and treatment of patients with a wide spectrum of cancer syndromes. This article focuses on the imaging spectrum of select hereditary cancer syndromes, featuring imaging features of associated common and uncommon tumors and conditions in each syndrome, along with screening and surveillance recommendations for each condition. MRI has proved to be a useful screening modality in such patients, as these patients are often young and require prolonged screening; MRI has the added advantage of better soft-tissue contrast without ionizing radiation. The whole-body MRI protocol is also briefly discussed. The radiologist is sometimes the first physician to encounter such patients, and knowledge of these syndromes can help identify these patients earlier and impact their care by timely diagnosis and intervention. This also benefits the family members, as they can also undergo genetic testing and obtain an early diagnosis and screening. ©RSNA, 2019.


Subject(s)
Neoplastic Syndromes, Hereditary/diagnostic imaging , Adult , Aged , Child , Early Detection of Cancer , Family Health , Female , Genetic Counseling , Humans , Magnetic Resonance Imaging/methods , Male , Mammography/methods , Middle Aged , Neoplasms, Multiple Primary/diagnostic imaging , Neoplasms, Multiple Primary/genetics , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/prevention & control , Tomography, X-Ray Computed/methods , Ultrasonography/methods , Whole Body Imaging/methods
19.
Radiographics ; 36(2): 374-92, 2016.
Article in English | MEDLINE | ID: mdl-26824512

ABSTRACT

On the basis of the similarities in the histopathologic findings and the clinical-biologic behaviors of select biliary and pancreatic conditions, a new disease concept, "biliary diseases with pancreatic counterparts," has been proposed. Both nonneoplastic and neoplastic pathologic conditions of the biliary tract have their counterparts in the pancreas. Immunoglobulin G4 (IgG4)-related sclerosing cholangitis is the biliary manifestation of IgG4-related sclerosing disease, and type 1 autoimmune pancreatitis is its pancreatic counterpart. People with chronic alcoholism can develop peribiliary cysts and fibrosis as well as pancreatic fibrosis and chronic pancreatitis simultaneously. Pancreatic ductal adenocarcinoma, intraductal papillary mucinous neoplasm, and mucinous cystic neoplasm are considered pancreatic counterparts for the biliary neoplasms of extrahepatic cholangiocarcinoma, intraductal papillary neoplasm of the biliary tract, and hepatic mucinous cystic neoplasm, respectively. The anatomic proximity of the biliary tract and the pancreas, the nearly simultaneous development of both organs from the endoderm of the foregut, and the presence of pancreatic exocrine acini within the peribiliary glands surrounding the extrahepatic bile ducts are suggested as causative factors for these similarities. Interestingly, these diseases show "nearly" identical findings at cross-sectional imaging, an observation that further supports this new disease concept. New information obtained with regard to biliary diseases can be used for evaluation of pancreatic abnormalities, and vice versa. In addition, combined genetic and molecular studies may be performed to develop novel therapeutic targets. For both biliary and pancreatic diseases, imaging plays a pivotal role in initial diagnosis, evaluation of treatment response, efficacy testing of novel drugs, and long-term surveillance.


Subject(s)
Biliary Tract Diseases/diagnostic imaging , Magnetic Resonance Imaging , Pancreatic Diseases/diagnostic imaging , Tomography, X-Ray Computed , Autoimmune Diseases/classification , Autoimmune Diseases/diagnostic imaging , Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/pathology , Bile Ducts/embryology , Bile Ducts/pathology , Biliary Tract Diseases/classification , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Cholangiocarcinoma/diagnostic imaging , Cholangiocarcinoma/pathology , Cholangitis, Sclerosing/diagnostic imaging , Cholangitis, Sclerosing/immunology , Epithelium/pathology , Humans , Immunoglobulin G/analysis , Neoplasms, Cystic, Mucinous, and Serous/diagnostic imaging , Neoplasms, Cystic, Mucinous, and Serous/pathology , Organ Specificity , Pancreatic Diseases/classification , Pancreatic Ducts/embryology , Pancreatic Ducts/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatitis/diagnostic imaging , Pancreatitis/immunology
20.
Radiographics ; 36(3): 918-32, 2016.
Article in English | MEDLINE | ID: mdl-27163599

ABSTRACT

The spectrum of extrauterine pelvic serous carcinomas includes ovarian serous carcinoma, primary peritoneal serous carcinoma, and primary fallopian tube carcinoma. Ovarian serous carcinoma, the most common ovarian malignant epithelial neoplasm, consists of two distinct entities: high-grade and low-grade serous carcinomas. Primary peritoneal serous carcinoma and primary fallopian tube carcinoma are rare malignancies that share many characteristics of high-grade serous carcinomas. Recent advances in the genetics and molecular biology of gynecologic cancers have suggested a common origin of many extrauterine pelvic serous carcinomas from fallopian tube epithelium. With the exception of low-grade serous carcinomas, which arise from cortical inclusion cysts lined by tubal epithelium, most extrauterine pelvic serous carcinomas are believed to originate from serous tubal intraepithelial carcinomas and show similar clinical-biologic behaviors and natural histories. Indeed, the International Federation of Gynecology and Obstetrics Committee on Gynecologic Oncology recently recognized that these cancers should be considered collectively, with a common system of staging and management strategies for ovarian, primary peritoneal, and fallopian tube cancers. A paradigm shift has occurred in our understanding of the pathogenesis of extrauterine pelvic serous carcinomas that has the potential to change current strategies for screening, prevention, diagnosis, and management. Ultrasonography (US), computed tomography (CT), magnetic resonance imaging, and combined positron emission tomography and CT are pivotal in screening, initial diagnosis, and treatment follow-up; however, because of this paradigm shift, new radiologic techniques, such as contrast material-enhanced US and molecular US imaging, and various optical imaging techniques are being investigated as important screening and diagnostic tools. Because of evolving knowledge of genetic and molecular changes underlying the pathogenesis of extrauterine pelvic serous carcinomas, new targeted therapies are being developed to improve patient prognosis. (©)RSNA, 2016.


Subject(s)
Cystadenocarcinoma, Serous/diagnostic imaging , Cystadenocarcinoma, Serous/pathology , Fallopian Tube Neoplasms/diagnostic imaging , Fallopian Tube Neoplasms/pathology , Neoplasms, Glandular and Epithelial/diagnostic imaging , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/pathology , Peritoneal Neoplasms/diagnostic imaging , Peritoneal Neoplasms/pathology , Carcinoma, Ovarian Epithelial , Contrast Media , Diagnosis, Differential , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL