Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Chemistry ; : e202402647, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39158114

ABSTRACT

Metals have been used in medicine for centuries. However, it was not until much later that the effects of inorganic drugs could be rationalized from a mechanistic point of view. Today, thanks to the technologies available, this approach has been functionally developed and implemented. It has been found that there is probably no single biological target for the pharmacological effects of most inorganic drugs. Herein, we present an overview of some integrated and multi-technique approaches to elucidate the molecular interactions underlying the biological effects of metallodrugs. On this premise, selected examples are used to illustrate how the information obtained on metal-based drugs and their respective mechanisms can become relevant for applications in fields other than medicine. For example, some well-known metallodrugs, which have been shown to bind specific amino acid residues of proteins, can be used to solve problems related to protein structure elucidation in crystallographic studies. Diruthenium tetraacetate can be used to catalyze the conversion of hydroxylamines to nitrones with a high selectivity when bound to lysozyme. Finally, a case study is presented in which an unprecedented palladium/arsenic-mediated catalytic cycle for nitrile hydration was discovered thanks to previous studies on the solution chemistry of the anticancer compound arsenoplatin-1 (AP-1).

2.
Inorg Chem ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226133

ABSTRACT

A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-ß-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry. The biological activity of the compounds was evaluated in the A2780 and A2780R (cisplatin-resistant) ovarian cancer cell lines and the HSkMC (human skeletal muscle) healthy cell line. Inhibition studies of the selenoenzyme thioredoxin reductase (TrxR) were also carried out. The results highlighted that the gold complexes are more stable in aqueous environment and capable of interaction with SOD and HSA. Moreover, these carbenes strongly inhibited the TrxR activity. In contrast, the silver ones underwent structural alterations in the aqueous medium and showed greater antiproliferative activity.

3.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000514

ABSTRACT

The peculiar behavior of arsenoplatin-1, ([Pt(µ-NHC(CH3)O)2ClAs(OH)2], AP-1), in aqueous solution and the progressive appearance of a characteristic and intense blue color led us to carry out a more extensive investigation to determine the nature of this elusive chemical species, which we named "AsPt blue". A multi-technique approach was therefore implemented to describe the processes involved in the formation of AsPt blue, and some characteristic features of this intriguing species were revealed.


Subject(s)
Oxidation-Reduction , Water/chemistry , Solutions , Organoplatinum Compounds/chemistry
4.
Inorg Chem ; 62(26): 10389-10396, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37342994

ABSTRACT

Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.


Subject(s)
Antineoplastic Agents , Auranofin , Auranofin/pharmacology , Auranofin/chemistry , Ligands , Gold/chemistry , Antineoplastic Agents/pharmacology , Magnetic Resonance Spectroscopy
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674620

ABSTRACT

Photoactivatable Pt(IV) prodrugs represent nowadays an intriguing class of potential metal-based drugs, endowed with more chemical inertness in their oxidized form and better selectivity for the target with respect to the clinically established Pt(II) compounds. In fact, they have the possibility to be reduced by light irradiation directly at the site of interest. For this reason, we synthesized a new Pt(IV) complex, [Pt(OCOCH3)3(4'-phenyl-2,2':6',2''-terpyridine)][CF3SO3] (1), that is well soluble in aqueous medium and totally unreactive towards selected model biomolecules until its reduction. The highlight of this work is the rapid and efficient photoreduction of 1 with visible light (460 nm), which leads to its reactive Pt(II) analogue. This behavior was made possible by taking advantage of an efficient catalytic system based on flavin and NADH, which is naturally present in the cellular environment. As a comparison, the reduction of 1 was also studied with simple UV irradiation, but both UV-Vis spectrophotometry and 1H-NMR spectrometry showed that the flavin-catalyzed reduction with visible light was faster. Lastly, the reactivity against two representative biological targets, i.e., human serum albumin and one monofilament oligonucleotide fragment, was evaluated by high-resolution mass spectrometry. The results clearly pointed out that the prodrug 1 did not interact with these targets until its photoreduction to the Pt(II) analogue.


Subject(s)
Antineoplastic Agents , Prodrugs , Humans , Antineoplastic Agents/chemistry , Organoplatinum Compounds/chemistry , Light , Magnetic Resonance Spectroscopy , Prodrugs/chemistry
6.
Molecules ; 28(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36770719

ABSTRACT

A panel of four novel gold(I) complexes, inspired by the clinically established gold drug auranofin (1-Thio-ß-D-glucopyranosatotriethylphosphine gold-2,3,4,6-tetraacetate), was prepared and characterized. All these compounds feature the replacement of the triethylphosphine ligand of the parent compound auranofin with a trimethylphosphite ligand. The linear coordination around the gold(I) center is completed by Cl-, Br-, I- or by the thioglucose tetraacetate ligand (SAtg). The in-solution behavior of these gold compounds as well as their interactions with some representative model proteins were comparatively analyzed through 31PNMR and ESI-MS measurements. Notably, all panel compounds turned out to be stable in aqueous media, but significant differences with respect to auranofin were disclosed in their interactions with a few leading proteins. In addition, the cytotoxic effects produced by the panel compounds toward A2780, A2780R and SKOV-3 ovarian cancer cells were quantitated and found to be in the low micromolar range, since the IC50 of all compounds was found to be between 1 µM and 10 µM. Notably, these novel gold complexes showed large and similar inhibition capabilities towards the key enzyme thioredoxin reductase, again comparable to those of auranofin. The implications of these results for the discovery of new and effective gold-based anticancer agents are discussed.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Phosphites , Humans , Female , Auranofin/pharmacology , Auranofin/chemistry , Gold/chemistry , Cell Line, Tumor , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
7.
Int J Mol Sci ; 23(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36430642

ABSTRACT

Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain.


Subject(s)
Auranofin , Ferritins , Nanoparticle Drug Delivery System , Animals , Humans , Antineoplastic Agents/chemistry , Auranofin/chemistry , Auranofin/pharmacology , Binding Sites , Ferritins/chemistry , Ferritins/metabolism , Gold/chemistry , Horses , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacology
8.
Int J Mol Sci ; 23(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35886853

ABSTRACT

Ammonium trichloro (dioxoethylene-O,O') tellurate (AS101) is a potent immunomodulator prodrug that, in recent years, entered various clinical trials and was tested for a variety of potential therapeutic applications. It has been demonstrated that AS101 quickly activates in aqueous milieu, producing TeOCl3-, which likely represents the pharmacologically active species. Here we report on the study of the activation process of AS101 and of two its analogues. After the synthesis and characterization of AS101 and its derivatives, we have carried out a comparative study through a combined experimental and computational analysis. Based on the obtained results, we describe here, for the first time, the detailed reaction that AS101 and its bromido- and iodido-replaced analogues undergo in presence of water, allowing the conversion of the original molecule to the likely true pharmacophore. Interestingly, moving down in the halogens' group we observed a higher tendency to react, attributable to the ligands' effect. The chemical and mechanistic implications of these meaningful differences are discussed.


Subject(s)
Prodrugs , Adjuvants, Immunologic/therapeutic use , Ethylenes , Ligands , Prodrugs/pharmacology , Tellurium
9.
Molecules ; 28(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36615466

ABSTRACT

Although important progress has been made, cancer still remains a complex disease to treat. Serious side effects, the insurgence of resistance and poor selectivity are some of the problems associated with the classical metal-based anti-cancer therapies currently in clinical use. New treatment approaches are still needed to increase cancer patient survival without cancer recurrence. Herein, we reviewed two promising-at least in our opinion-new strategies to increase the efficacy of transition metal-based complexes. First, we considered the possibility of assembling two biologically active fragments containing different metal centres into the same molecule, thus obtaining a heterobimetallic complex. A critical comparison with the monometallic counterparts was done. The reviewed literature has been divided into two groups: the case of platinum; the case of gold. Secondly, the conjugation of metal-based complexes to a targeting moiety was discussed. Particularly, we highlighted some interesting examples of compounds targeting cancer cell organelles according to a third-order targeting approach, and complexes targeting the whole cancer cell, according to a second-order targeting strategy.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Transition Elements , Humans , Coordination Complexes/pharmacology , Coordination Complexes/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Gold/therapeutic use
10.
Molecules ; 27(8)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35458776

ABSTRACT

Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488-499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au-S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.


Subject(s)
Auranofin , Staphylococcal Infections , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Auranofin/chemistry , Auranofin/pharmacology , Humans , Staphylococcal Infections/drug therapy , Staphylococcus aureus
11.
Chemistry ; 27(59): 14690-14701, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34343376

ABSTRACT

Ferritins are nanocage proteins that store iron ions in their central cavity as hydrated ferric oxide biominerals. In mammals, further the L (light) and H (heavy) chains constituting cytoplasmic maxi-ferritins, an additional type of ferritin has been identified, the mitochondrial ferritin (MTF). Human MTF (hMTF) is a functional homopolymeric H-like ferritin performing the ferroxidase activity in its ferroxidase site (FS), in which Fe(II) is oxidized to Fe(III) in the presence of dioxygen. To better investigate its ferroxidase properties, here we performed time-lapse X-ray crystallography analysis of hMTF, providing structural evidence of how iron ions interact with hMTF and of their binding to the FS. Transient iron binding sites, populating the pathway along the cage from the iron entry channel to the catalytic center, were also identified. Furthermore, our kinetic data at variable iron loads indicate that the catalytic iron oxidation reaction occurs via a diferric peroxo intermediate followed by the formation of ferric-oxo species, with significant differences with respect to human H-type ferritin.


Subject(s)
Ceruloplasmin , Ferric Compounds , Animals , Apoferritins/metabolism , Binding Sites , Ceruloplasmin/metabolism , Ferritins/metabolism , Humans , Iron/metabolism , Oxidation-Reduction
12.
Biometals ; 34(4): 867-879, 2021 08.
Article in English | MEDLINE | ID: mdl-33907910

ABSTRACT

Chloro(triethylphosphine)gold(I), (Et3PAuCl hereafter), is an Auranofin (AF)-related compound showing very similar biological and pharmacological properties. Like AF, Et3PAuCl exhibits potent antiproliferative properties in vitro toward a variety of cancer cell lines and is a promising anticancer drug candidate. We wondered whether Et3PAuCl encapsulation might lead to an improved pharmacological profile also considering the likely reduction of unwanted side-reactions that are responsible for adverse effects and for drug inactivation. Et3PAuCl was encapsulated in biocompatible PLGA-PEG nanoparticles (NPs) and the new formulation evaluated in colorectal HCT-116 cancer cells in comparison to the free gold complex. Notably, encapsulated Et3PAuCl (nano-Et3PAuCl hereafter) mostly retains the cellular properties of the free gold complex and elicits even greater cytotoxic effects in colorectal cancer (CRC) cells, mediated by apoptosis and autophagy. Moreover, a remarkable inhibition of two crucial signaling pathways, i.e. ERK and AKT, by nano-Et3PAuCl, was clearly documented. The implications of these findings are discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Nanoparticles/chemistry , Organogold Compounds/pharmacology , Polyesters/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Capsules , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Drug Screening Assays, Antitumor , Humans , Organogold Compounds/chemical synthesis , Organogold Compounds/chemistry , Tumor Cells, Cultured
13.
Int J Mol Sci ; 22(4)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668605

ABSTRACT

Arsenoplatin-1 (AP-1), the prototype of a novel class of metallodrugs containing a PtAs(OH)2 core, was encapsulated within the apoferritin (AFt) nanocage. UV-Vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy measurements confirmed metallodrug encapsulation and allowed us to determine the average amount of AP-1 trapped inside the cage. The X-ray structure of AP-1-encapsulated AFt was solved at 1.50 Å. Diffraction data revealed that an AP-1 fragment coordinates the side chain of a His residue. The biological activity of AP-1-loaded AFt was comparatively tested on a few representative cancer and non-cancer cell lines. Even though the presence of the cage reduces the overall cytotoxicity of AP-1, it improves its selectivity towards cancer cells.


Subject(s)
Antineoplastic Agents , Arsenic Trioxide/analogs & derivatives , Cisplatin/analogs & derivatives , Cytotoxins , Ferritins , Neoplasms/drug therapy , Platinum Compounds , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Arsenic Trioxide/chemistry , Arsenic Trioxide/pharmacology , BALB 3T3 Cells , Cisplatin/chemistry , Cisplatin/pharmacology , Cytotoxins/chemistry , Cytotoxins/pharmacology , Ferritins/chemistry , Ferritins/pharmacology , Humans , Mice , Molecular Structure , Neoplasms/metabolism , Neoplasms/pathology , Platinum Compounds/chemistry , Platinum Compounds/pharmacology , Structure-Activity Relationship
14.
Molecules ; 26(8)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921819

ABSTRACT

In this work, we have analysed the binding of the Pt(II) complexes ([PtCl(4'-phenyl-2,2':6',2″-terpyridine)](CF3SO3) (1), [PtI(4'-phenyl-2,2':6',2″-terpyridine)](CF3SO3) (2) and [PtCl(1,3-di(2-pyridyl)benzene) (3)] with selected model proteins (hen egg-white lysozyme, HEWL, and ribonuclease A, RNase A). Platinum coordination compounds are intensively studied to develop improved anticancer agents. In this regard, a critical issue is the possible role of Pt-protein interactions in their mechanisms of action. Multiple techniques such as differential scanning calorimetry (DSC), electrospray ionization mass spectrometry (ESI-MS) and UV-Vis absorbance titrations were used to enlighten the details of the binding to the different biosubstrates. On the one hand, it may be concluded that the affinity of 3 for the proteins is low. On the other hand, 1 and 2 strongly bind them, but with major binding mode differences when switching from HEWL to RNase A. Both 1 and 2 bind to HEWL with a non-specific (DSC) and non-covalent (ESI-MS) binding mode, dominated by a 1:1 binding stoichiometry (UV-Vis). ESI-MS data indicate a protein-driven chloride loss that does not convert into a covalent bond, likely due to the unfavourable complexes' geometries and steric hindrance. This result, together with the significant changes of the absorbance profiles of the complex upon interaction, suggest an electrostatic binding mode supported by some stacking interaction of the aromatic ligand. Very differently, in the case of RNase A, slow formation of covalent adducts occurs (DSC, ESI-MS). The reactivity is higher for the iodo-compound 2, in agreement with iodine lability higher than chlorine.


Subject(s)
Antineoplastic Agents/chemistry , Organoplatinum Compounds/chemistry , Proteins/chemistry , Thermodynamics , Spectrometry, Mass, Electrospray Ionization
15.
J Biol Inorg Chem ; 25(7): 979-993, 2020 10.
Article in English | MEDLINE | ID: mdl-32926233

ABSTRACT

Native mass spectrometry is a potent technique to study and characterize biomacromolecules in their native state. Here, we have applied this method to explore the solution chemistry of human carbonic anhydrase I (hCA I) and its interactions with four different inhibitors, namely three sulfonamide inhibitors (AAZ, MZA, SLC-0111) and the dithiocarbamate derivative of morpholine (DTC). Through high-resolution ESI-Q-TOF measurements, the native state of hCA I and the binding of the above inhibitors were characterized in the molecular detail. Native mass spectrometry was also exploited to assess the direct competition in solution among the various inhibitors in relation to their affinity constants. Additional studies were conducted on the interaction of hCA I with the metallodrug auranofin, under various solution and instrumental conditions. Auranofin is a selective reagent for solvent-accessible free cysteine residues, and its reactivity was analyzed also in the presence of CA inhibitors. Overall, our investigation reveals that native mass spectrometry represents an excellent tool to characterize the solution behavior of carbonic anhydrase.


Subject(s)
Carbonic Anhydrase I/antagonists & inhibitors , Carbonic Anhydrase I/metabolism , Carbonic Anhydrase Inhibitors/metabolism , Carbonic Anhydrase Inhibitors/pharmacology , Mass Spectrometry , Auranofin/metabolism , Auranofin/pharmacology , Carbonic Anhydrase I/chemistry , Humans , Models, Molecular , Protein Binding , Protein Conformation
16.
Inorg Chem ; 59(11): 7710-7720, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32396371

ABSTRACT

Studying metal-protein interactions is key for understanding the fate of metallodrugs in biological systems. When a metal complex is not emissive and too weakly bound for mass spectrometry analysis, however, it may become challenging to study such interactions. In this work a synthetic procedure was developed for the alkyne functionalization of a photolabile ruthenium polypyridyl complex, [Ru(tpy)(bpy)(Hmte)](PF6)2, where tpy = 2,2':6',2''-terpyridine, bpy = 2,2'-bipyridine, and Hmte = 2-(methylthio)ethanol. In the functionalized complex [Ru(HCC-tpy)(bpy)(Hmte)](PF6)2, where HCC-tpy = 4'-ethynyl-2,2':6',2''-terpyridine, the alkyne group can be used for bioorthogonal ligation to an azide-labeled fluorophore using copper-catalyzed "click" chemistry. We developed a gel-based click chemistry method to study the interaction between this ruthenium complex and bovine serum albumin (BSA). Our results demonstrate that visualization of the interaction between the metal complex and the protein is possible, even when this interaction is too weak to be studied by conventional means such as UV-vis spectroscopy or ESI mass spectrometry. In addition, the weak metal complex-protein interaction is controlled by visible light irradiation, i.e., the complex and the protein do not interact in the dark, but they do interact via weak van der Waals interactions after light activation of the complex, which triggers photosubstitution of the Hmte ligand.


Subject(s)
Alkynes/chemistry , Coordination Complexes/chemistry , Photosensitizing Agents/chemistry , Ruthenium/chemistry , Serum Albumin, Bovine/chemistry , Animals , Cattle , Click Chemistry , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Photosensitizing Agents/chemical synthesis
17.
Molecules ; 25(22)2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33233711

ABSTRACT

Gold and silver N-heterocyclic carbenes (NHCs) are emerging for therapeutic applications. Multiple techniques are here used to unveil the mechanistic details of the binding to different biosubstrates of bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) silver chloride [Ag(EIA)2]Cl and bis(1-(anthracen-9-ylmethyl)-3-ethylimidazol-2-ylidene) gold chloride [Au(EIA)2]Cl. As the biosubstrates, we tested natural double-stranded DNA, synthetic RNA polynucleotides (single-poly(A), double-poly(A)poly(U) and triple-stranded poly(A)2poly(U)), DNA G-quadruplex structures (G4s), and bovine serum albumin (BSA) protein. Absorbance and fluorescence titrations, mass spectrometry together with melting and viscometry tests show significant differences in the binding features between silver and gold compounds. [Au(EIA)2]Cl covalently binds BSA. It is here evidenced that the selectivity is high: low affinity and external binding for all polynucleotides and G4s are found. Conversely, in the case of [Ag(EIA)2]Cl, the binding to BSA is weak and relies on electrostatic interactions. [Ag(EIA)2]Cl strongly/selectively interacts only with double strands by a mechanism where intercalation plays the major role, but groove binding is also operative. The absence of an interaction with triplexes indicates the major role played by the geometrical constraints to drive the binding mode.


Subject(s)
Gold/chemistry , Heterocyclic Compounds/chemistry , Methane/analogs & derivatives , Silver/chemistry , Algorithms , DNA/chemistry , Macromolecular Substances/chemistry , Methane/chemistry , Models, Theoretical , Molecular Structure , Nucleic Acid Denaturation , RNA/chemistry , Serum Albumin, Bovine/chemistry , Spectrum Analysis , Structure-Activity Relationship , Thermodynamics
18.
Inorg Chem ; 58(16): 10616-10619, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31361466

ABSTRACT

The medicinal gold(III) dithiocarbamato complex AuL12 forms a stable adduct with bovine serum albumin. The crystal structure reveals that a single gold(I) center is bound to Cys34, with the dithiocarbamato ligand being released. To the best of our knowledge, this is the first structure for a gold adduct of serum albumin.

19.
Biometals ; 32(5): 813-817, 2019 10.
Article in English | MEDLINE | ID: mdl-31473877

ABSTRACT

The study of metal-based drugs represents an important branch of modern bioinorganic chemistry. The growing importance of this field is linked to the large success in medicine of a few metal based drugs, either in clinical use or still experimental. Moreover, these metal-based drugs are frequently used as reference compounds to assess comparatively the behavior of newly synthesized metallodrugs. For the convenience of researchers working in this area we report here a compilation of the relevant analytical and spectroscopic data of ten representative metallodrugs based on Platinum, Ruthenium, Gold and Mercury. The selected compounds, namely Cisplatin, Oxaliplatin, Carboplatin, Auranofin, Sodium Aurothiomalate, NAMI-A, KP1019, Thimerosal, Merbromin and Phenylmercury Acetate, were chosen owing to their importance in the field. We believe that this compilation may turn very helpful to researchers as these data are difficult to find and generally scattered over a large number of (old) publications.


Subject(s)
Coordination Complexes/chemistry , Auranofin/chemistry , Carboplatin/chemistry , Cisplatin/chemistry , Gold/chemistry , Gold Sodium Thiomalate/chemistry , Merbromin/chemistry , Mercury/chemistry , Oxaliplatin/chemistry , Phenylmercury Compounds/chemistry , Platinum/chemistry , Ruthenium/chemistry
20.
Biometals ; 32(6): 949, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31745680

ABSTRACT

In the initial online publication, the given name of the first author was incorrectly displayed and should have read Damiano. The original article has been corrected and the proper representation of the authors' names and their affiliation is also listed here.

SELECTION OF CITATIONS
SEARCH DETAIL