ABSTRACT
Genes commonly express multiple RNA products (RNA isoforms), which differ in exonic content and can have different functions. Making sense of the plethora of known and novel RNA isoforms being identified by transcriptomic approaches requires a user-friendly way to visualize gene isoforms and how they differ in exonic content, expression levels and potential functions. Here we introduce IsoVis, a freely available webserver that accepts user-supplied transcriptomic data and visualizes the expressed isoforms in a clear, intuitive manner. IsoVis contains numerous features, including the ability to visualize all RNA isoforms of a gene and their expression levels; the annotation of known isoforms from external databases; mapping of protein domains and features to exons, allowing changes to protein sequence and function between isoforms to be established; and extensive species compatibility. Datasets visualised on IsoVis remain private to the user, allowing analysis of sensitive data. IsoVis visualisations can be downloaded to create publication-ready figures. The IsoVis webserver enables researchers to perform isoform analyses without requiring programming skills, is free to use, and available at https://isomix.org/isovis/.
Subject(s)
Internet , Molecular Sequence Annotation , RNA Isoforms , Software , RNA Isoforms/genetics , RNA Isoforms/metabolism , RNA Isoforms/chemistry , Humans , Animals , Exons/genetics , Transcriptome/genetics , Alternative SplicingABSTRACT
Accurately quantifying gene and isoform expression changes is essential to understanding cell functions, differentiation and disease. Sequencing full-length native RNAs using long-read direct RNA sequencing (DRS) has the potential to overcome many limitations of short and long-read sequencing methods that require RNA fragmentation, cDNA synthesis or PCR. However, there are a lack of tools specifically designed for DRS and its ability to identify differential expression in complex organisms is poorly characterised. We developed NanoCount for fast, accurate transcript isoform quantification in DRS and demonstrate it outperforms similar methods. Using synthetic controls and human SH-SY5Y cell differentiation into neuron-like cells, we show that DRS accurately quantifies RNA expression and identifies differential expression of genes and isoforms. Differential expression of 231 genes, 333 isoforms, plus 27 isoform switches were detected between undifferentiated and differentiated SH-SY5Y cells and samples clustered by differentiation state at the gene and isoform level. Genes upregulated in neuron-like cells were associated with neurogenesis. NanoCount quantification of thousands of novel isoforms discovered with DRS likewise enabled identification of their differential expression. Our results demonstrate enhanced DRS isoform quantification with NanoCount and establish the ability of DRS to identify biologically relevant differential expression of genes and isoforms.
Subject(s)
Nanopore Sequencing , Nanopores , Gene Expression Profiling/methods , Humans , Protein Isoforms/genetics , RNA/genetics , Sequence Analysis, RNA/methods , TranscriptomeABSTRACT
This study demonstrates the control of neuronal survival and development using nitrogen-doped ultrananocrystalline diamond (N-UNCD). We highlight the role of N-UNCD in regulating neuronal activity via near-infrared illumination, demonstrating the generation of stable photocurrents that enhance neuronal survival and neurite outgrowth and foster a more active, synchronized neuronal network. Whole transcriptome RNA sequencing reveals that diamond substrates improve cellular-substrate interaction by upregulating extracellular matrix and gap junction-related genes. Our findings underscore the potential of conductive diamond as a robust and biocompatible platform for noninvasive and effective neural tissue engineering.
Subject(s)
Diamond , Tissue Engineering , Diamond/pharmacology , Diamond/chemistry , Electric Conductivity , Neurons/physiology , Cell SurvivalABSTRACT
Oxford Nanopore direct RNA sequencing (DRS) is capable of sequencing complete RNA molecules and accurately measuring gene and isoform expression. However, as DRS is designed to profile intact RNA, expression quantification may be more heavily dependent upon RNA integrity than alternative RNA sequencing methodologies. It is currently unclear how RNA degradation impacts DRS or whether it can be corrected for. To assess the impact of RNA integrity on DRS, we performed a degradation time series using SH-SY5Y neuroblastoma cells. Our results demonstrate that degradation is a significant and pervasive factor that can bias DRS measurements, including a reduction in library complexity resulting in an overrepresentation of short genes and isoforms. Degradation also biases differential expression analyses; however, we find that explicit correction can almost fully recover meaningful biological signal. In addition, DRS provided less biased profiling of partially degraded samples than Nanopore PCR-cDNA sequencing. Overall, we find that samples with RNA integrity number (RIN) > 9.5 can be treated as undegraded and samples with RIN > 7 can be utilized for DRS with appropriate correction. These results establish the suitability of DRS for a wide range of samples, including partially degraded in vivo clinical and post-mortem samples, while limiting the confounding effect of degradation on expression quantification.
ABSTRACT
Long-read single-cell RNA sequencing (scRNA-seq) enables the quantification of RNA isoforms in individual cells. However, long-read scRNA-seq using the Oxford Nanopore platform has largely relied upon matched short-read data to identify cell barcodes. We introduce BLAZE, which accurately and efficiently identifies 10x cell barcodes using only nanopore long-read scRNA-seq data. BLAZE outperforms the existing tools and provides an accurate representation of the cells present in long-read scRNA-seq when compared to matched short reads. BLAZE simplifies long-read scRNA-seq while improving the results, is compatible with downstream tools accepting a cell barcode file, and is available at https://github.com/shimlab/BLAZE .
Subject(s)
RNA Isoforms , Single-Cell Gene Expression Analysis , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Software , Gene Expression Profiling/methodsABSTRACT
BACKGROUND: Larvae of the Australian sheep blowfly, Lucilia cuprina, parasitise sheep by feeding on skin excretions, dermal tissue and blood, causing severe damage known as flystrike or myiasis. Recent advances in -omic technologies and bioinformatic data analyses have led to a greater understanding of blowfly biology and should allow the identification of protein families involved in host-parasite interactions and disease. Current literature suggests that proteins of the SCP (Sperm-Coating Protein)/TAPS (Tpx-1/Ag5/PR-1/Sc7) (SCP/TAPS) superfamily play key roles in immune modulation, cross-talk between parasite and host as well as developmental and reproductive processes in parasites. METHODS: Here, we employed a bioinformatics workflow to curate the SCP/TAPS protein gene family in L. cuprina. Protein sequence, the presence and number of conserved CAP-domains and phylogeny were used to group identified SCP/TAPS proteins; these were compared to those found in Drosophila melanogaster to make functional predictions. In addition, transcription levels of SCP/TAPS protein-encoding genes were explored in different developmental stages. RESULTS: A total of 27 genes were identified as belonging to the SCP/TAPS gene family: encoding 26 single-domain proteins each with a single CAP domain and a solitary double-domain protein containing two conserved cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domains. Surprisingly, 16 SCP/TAPS predicted proteins formed an extended tandem array spanning a 53 kb region of one genomic region, which was confirmed by MinION long-read sequencing. RNA-seq data indicated that these 16 genes are highly transcribed in all developmental stages (excluding the embryo). CONCLUSIONS: Future work should assess the potential of selected SCP/TAPS proteins as novel targets for the control of L. cuprina and related parasitic flies of major socioeconomic importance.