ABSTRACT
Metal substitution of molecular sieve systems is a major driving force in developing novel catalytic processes to meet current demands of green chemistry concepts and to achieve sustainability in the chemical industry and in other aspects of our everyday life. The advantages of metal-substituted molecular sieves include high surface areas, molecular sieving effects, confinement effects, and active site and morphology variability and stability. The present review aims to comprehensively and critically assess recent advances in the area of tetra- (Ti, Sn, Zr, Hf) and pentavalent (V, Nb, Ta) metal-substituted molecular sieves, which are mainly characterized for their Lewis acidic active sites. Metal oxide molecular sieve materials with properties similar to those of zeolites and siliceous molecular sieve systems are also discussed, in addition to relevant studies on metal-organic frameworks (MOFs) and some composite MOF systems. In particular, this review focuses on (i) synthesis aspects determining active site accessibility and local environment; (ii) advances in active site characterization and, importantly, quantification; (iii) selective redox and isomerization reaction applications; and (iv) photoelectrocatalytic applications.
ABSTRACT
The crystallization of zeolite TUN with 1,4-bis(N-methylpyrrolidinium)butane as template proceeds through an intermediate, designated IPC-3P, following the Ostwald rule of successive transformations. This apparently layered transient product has been thoroughly investigated and found to consist of MWW monolayers stacked without alignment in register, that is, disordered compared with MCM-22P. The structure was confirmed based on X-ray diffraction and high-resolution (HR)TEM analysis. The layered zeolite precursor IPC-3P can be swollen and pillared affording a combined micro- and mesoporous material with enhanced Brunauer-Emmett-Teller (BET) surface area (685â m(2) g(-1) ) and greater accessibility of Brønsted acid sites for bulky molecules. This mesoporous material was probed with 2,6-di-tert-butylpyridine (DTBP). IPC-3P and its modification create a new layered zeolite sub-family belonging to the MWW family. FTIR data indicate that (Al)MWW materials MCM-22 and IPC-3 with Si/Al ratios greater than 20 exhibit a lower relative ratio of Brønsted to Lewis acid sites than MCM-22 (with Si/Al ratios of around 13), that is, less than 2 versus more than 3, respectively. This is maintained even upon pillaring and warrants further exploration of materials like IPC-3P with a higher Al content. The unique XRD features of IPC-3P indicating misaligned stacking of layers and distinct from MCM-22P, are also seen in other MWW materials such as EMM-10P, hexamethonium-templated (HM)-MCM-22, ITQ-30, and UZM-8 suggesting the need for more detailed study of their identity and properties.
ABSTRACT
Asymmetric transfer hydrogenation (ATH) of cyclic imines using [RuCl(η(6)-p-cymene)TsDPEN] (TsDPEN = N-tosyl-1,2-diphenylethylenediamine) was tested with various aliphatic (secondary, tertiary) and aromatic amines employed in the HCOOH-base hydrogen donor mixture. Significant differences in reaction rates and stereoselectivity were observed, which pointed to the fact that the role of the base in the overall mechanism could be more significant than generally accepted. The hydrogenation mixture was studied by nuclear magnetic resonance (NMR), Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and vibrational circular dichroism (VCD) with infrared spectroscopy. The results suggested that the protonated base formed an associate with the active ruthenium-hydride species, most probably via a hydrogen bond with the sulfonyl group of the complex. It is assumed that the steric and electronic differences among the bases were responsible for the results of the initial ATH experiments.