Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Cell ; 171(7): 1559-1572.e20, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29245011

ABSTRACT

Large-scale transcriptome sequencing efforts have vastly expanded the catalog of long non-coding RNAs (lncRNAs) with varying evolutionary conservation, lineage expression, and cancer specificity. Here, we functionally characterize a novel ultraconserved lncRNA, THOR (ENSG00000226856), which exhibits expression exclusively in testis and a broad range of human cancers. THOR knockdown and overexpression in multiple cell lines and animal models alters cell or tumor growth supporting an oncogenic role. We discovered a conserved interaction of THOR with IGF2BP1 and show that THOR contributes to the mRNA stabilization activities of IGF2BP1. Notably, transgenic THOR knockout produced fertilization defects in zebrafish and also conferred a resistance to melanoma onset. Likewise, ectopic expression of human THOR in zebrafish accelerated the onset of melanoma. THOR represents a novel class of functionally important cancer/testis lncRNAs whose structure and function have undergone positive evolutionary selection.


Subject(s)
Disease Models, Animal , Melanoma/metabolism , RNA, Long Noncoding/metabolism , Zebrafish , Animals , Cell Line, Tumor , Gene Knockout Techniques , Humans , Male , Mice , RNA-Binding Proteins/metabolism , Testis/metabolism
3.
Mol Cell ; 84(2): 261-276.e18, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38176414

ABSTRACT

A hallmark of high-risk childhood medulloblastoma is the dysregulation of RNA translation. Currently, it is unknown whether medulloblastoma dysregulates the translation of putatively oncogenic non-canonical open reading frames (ORFs). To address this question, we performed ribosome profiling of 32 medulloblastoma tissues and cell lines and observed widespread non-canonical ORF translation. We then developed a stepwise approach using multiple CRISPR-Cas9 screens to elucidate non-canonical ORFs and putative microproteins implicated in medulloblastoma cell survival. We determined that multiple lncRNA-ORFs and upstream ORFs (uORFs) exhibited selective functionality independent of main coding sequences. A microprotein encoded by one of these ORFs, ASNSD1-uORF or ASDURF, was upregulated, associated with MYC-family oncogenes, and promoted medulloblastoma cell survival through engagement with the prefoldin-like chaperone complex. Our findings underscore the fundamental importance of non-canonical ORF translation in medulloblastoma and provide a rationale to include these ORFs in future studies seeking to define new cancer targets.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Protein Biosynthesis , Medulloblastoma/genetics , Open Reading Frames/genetics , Cell Survival/genetics , Cerebellar Neoplasms/genetics
4.
Mol Cell ; 83(6): 994-1011.e18, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36806354

ABSTRACT

All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.


Subject(s)
Peptides , Protein Biosynthesis , Humans , Open Reading Frames , Peptides/genetics , Proteomics , Micropeptides
5.
Trends Genet ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39379206

ABSTRACT

Cancer continues to be a major global health challenge, accounting for 10 million deaths annually worldwide. Since the inception of genome-wide cancer sequencing studies 20 years ago, a core set of ~700 oncogenes and tumor suppressor genes has become the basis for cancer research. However, this research has been based largely on an understanding that the human genome encodes ~19 500 protein-coding genes. Complementing this genomic landscape, recent advances have described numerous microproteins which are now poised to redefine our understanding of oncogenic processes and open new avenues for therapeutic intervention. This review explores the emerging evidence for microprotein involvement in cancer mechanisms and discusses potential therapeutic applications, with an emphasis on highlighting recent advances in the field.

6.
Cell ; 149(7): 1622-34, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22726445

ABSTRACT

Pseudogene transcripts can provide a novel tier of gene regulation through generation of endogenous siRNAs or miRNA-binding sites. Characterization of pseudogene expression, however, has remained confined to anecdotal observations due to analytical challenges posed by the extremely close sequence similarity with their counterpart coding genes. Here, we describe a systematic analysis of pseudogene "transcription" from an RNA-Seq resource of 293 samples, representing 13 cancer and normal tissue types, and observe a surprisingly prevalent, genome-wide expression of pseudogenes that could be categorized as ubiquitously expressed or lineage and/or cancer specific. Further, we explore disease subtype specificity and functions of selected expressed pseudogenes. Taken together, we provide evidence that transcribed pseudogenes are a significant contributor to the transcriptional landscape of cells and are positioned to play significant roles in cellular differentiation and cancer progression, especially in light of the recently described ceRNA networks. Our work provides a transcriptome resource that enables high-throughput analyses of pseudogene expression.


Subject(s)
Genome-Wide Association Study , Neoplasms/genetics , Pseudogenes/genetics , Transcriptome , Amino Acid Sequence , Base Sequence , Breast Neoplasms/genetics , Female , Humans , Male , Molecular Sequence Data , Prostatic Neoplasms/genetics , Sequence Analysis, RNA
7.
Mol Cell Proteomics ; 22(9): 100631, 2023 09.
Article in English | MEDLINE | ID: mdl-37572790

ABSTRACT

Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."


Subject(s)
Protein Biosynthesis , Proteome , Humans , Proteome/metabolism , Proteomics/methods , Ribosome Profiling , Ribosomes/metabolism , Open Reading Frames
8.
J Inherit Metab Dis ; 43(4): 880-890, 2020 07.
Article in English | MEDLINE | ID: mdl-32064623

ABSTRACT

Congenital disorders of glycosylation (CDGs) are clinically heterogeneous disorders defined by a decreased ability to modify biomolecules with oligosaccharides. Critical disruptions in protein recognition, interaction, binding, and anchoring lead to broad physiological effects. Patients present with endocrinopathy, immunodeficiency, hepatopathy, coagulopathy, and neurodevelopmental impairment. Patients may experience mortality/morbidity associated with shock physiology that is frequently culture negative and poorly responsive to standard care. Oedema, pleural and pericardial effusions, ascites, proteinuria, and protein-losing enteropathy are observed with an exaggerated inflammatory response. The negative serum protein steady state results from several mechanisms including reduced hepatic synthesis and secretion, increased consumption, and extravasation. Disruption of the glycocalyx, a layer of glycosylated proteins that lines the endothelium preventing thrombosis and extravasation, is a suspected cause of endothelial dysfunction in CDG patients. We performed a retrospective review of CDG patients admitted to our institution with acute illness over the past 2 years. Longitudinal clinical and laboratory data collected during the sick and well states were assessed for biomarkers of inflammation and efficacy of interventions. Six patients representing 4 CDG subtypes and 14 hospitalisations were identified. Acute D-dimer elevation, proteinuria, decreased serum total protein levels, coagulation proteins, and albumin were observed with acute illness. Infusion of fresh frozen plasma, and in some cases protein C concentrate, was associated with clinical and biomarker improvement. This was notable with intra-patient comparison of treated vs untreated courses. Use of endothelial barrier support therapy may reduce endothelial permeability by restoring both regulatory serum protein homeostasis and supporting the glycocalyx and is likely a critical component of care for this population.


Subject(s)
Congenital Disorders of Glycosylation/metabolism , Congenital Disorders of Glycosylation/therapy , Endothelial Cells/metabolism , Glycocalyx/metabolism , Thrombosis/prevention & control , Biomarkers/metabolism , Capillary Permeability/physiology , Child , Child, Preschool , Endothelium, Vascular/metabolism , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Infant , Male , Plasma , Retrospective Studies
9.
Pediatr Blood Cancer ; 67(10): e28636, 2020 10.
Article in English | MEDLINE | ID: mdl-32762028

ABSTRACT

Systemic therapy for pediatric desmoid tumors has been challenged by a lack of high-quality clinical evidence and potential adverse effects. The gamma-secretase inhibitor nirogacestat has shown promising efficacy in adults. We report four cases of pediatric and young adult desmoid tumor patients (three with familial adenomatous polyposis [FAP] syndrome) who received nirogacestat on compassionate use. After a median of 13.5 months (range 6-18), three had durable benefit: a complete response (Case 1); a partial response (Case 2); stable disease (Case 3). The fourth had disease progression after a partial response. No patient experienced grade 3 or 4 adverse events.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Fibromatosis, Aggressive/drug therapy , Tetrahydronaphthalenes/therapeutic use , Valine/analogs & derivatives , Adolescent , Adult , Child, Preschool , Female , Fibromatosis, Aggressive/pathology , Humans , Male , Prognosis , Safety , Valine/therapeutic use , Young Adult
10.
Genome Res ; 25(7): 1068-79, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26063736

ABSTRACT

High-throughput RNA sequencing has revealed more pervasive transcription of the human genome than previously anticipated. However, the extent of natural antisense transcripts' (NATs) expression, their regulation of cognate sense genes, and the role of NATs in cancer remain poorly understood. Here, we use strand-specific paired-end RNA sequencing (ssRNA-seq) data from 376 cancer samples covering nine tissue types to comprehensively characterize the landscape of antisense expression. We found consistent antisense expression in at least 38% of annotated transcripts, which in general is positively correlated with sense gene expression. Investigation of sense/antisense pair expressions across tissue types revealed lineage-specific, ubiquitous and cancer-specific antisense loci transcription. Comparisons between tumor and normal samples identified both concordant (same direction) and discordant (opposite direction) sense/antisense expression patterns. Finally, we provide OncoNAT, a catalog of cancer-related genes with significant antisense transcription, which will enable future investigations of sense/antisense regulation in cancer. Using OncoNAT we identified several functional NATs, including NKX2-1-AS1 that regulates the NKX2-1 oncogene and cell proliferation in lung cancer cells. Overall, this study provides a comprehensive account of NATs and supports a role for NATs' regulation of tumor suppressors and oncogenes in cancer biology.


Subject(s)
Gene Expression Regulation, Neoplastic , Neoplasms/genetics , RNA, Antisense/genetics , Transcriptome , Cluster Analysis , Computational Biology/methods , Gene Expression Profiling , Genetic Loci , Humans , Organ Specificity/genetics
11.
Nature ; 487(7406): 239-43, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22722839

ABSTRACT

Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.


Subject(s)
Prostatic Neoplasms/genetics , Cell Proliferation , Cells, Cultured , Hepatocyte Nuclear Factor 3-alpha/genetics , Humans , Male , Molecular Sequence Data , Mutation , Orchiectomy , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Sequence Alignment , Signal Transduction
12.
Pediatr Blood Cancer ; 64(3)2017 03.
Article in English | MEDLINE | ID: mdl-27748023

ABSTRACT

The maturation of genomic technologies has enabled new discoveries in disease pathogenesis as well as new approaches to patient care. In pediatric oncology, patients may now receive individualized genomic analysis to identify molecular aberrations of relevance for diagnosis and/or treatment. In this context, several recent clinical studies have begun to explore the feasibility and utility of genomics-driven precision medicine. Here, we review the major developments in this field, discuss current limitations, and explore aspects of the clinical implementation of precision medicine, which lack consensus. Lastly, we discuss ongoing scientific efforts in this arena, which may yield future clinical applications.


Subject(s)
Molecular Targeted Therapy , Neoplasms/therapy , Precision Medicine , Biomedical Research , Genomics , Humans
13.
Mol Cell ; 36(5): 732-3, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20005836

ABSTRACT

In this issue of Molecular Cell, Goodarzi et al. (2009) employ novel computational approaches to demonstrate the power of global systems biology analyses in elucidating cancer biology.


Subject(s)
Gene Expression Regulation, Neoplastic , Regulatory Elements, Transcriptional , Software , Algorithms , Computational Biology/methods , Gene Expression Profiling , Lymphoma/genetics , Sequence Analysis, DNA , Urinary Bladder Neoplasms/genetics
15.
JAMA ; 314(9): 913-25, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26325560

ABSTRACT

IMPORTANCE: Cancer is caused by a diverse array of somatic and germline genomic aberrations. Advances in genomic sequencing technologies have improved the ability to detect these molecular aberrations with greater sensitivity. However, integrating them into clinical management in an individualized manner has proven challenging. OBJECTIVE: To evaluate the use of integrative clinical sequencing and genetic counseling in the assessment and treatment of children and young adults with cancer. DESIGN, SETTING, AND PARTICIPANTS: Single-site, observational, consecutive case series (May 2012-October 2014) involving 102 children and young adults (mean age, 10.6 years; median age, 11.5 years, range, 0-22 years) with relapsed, refractory, or rare cancer. EXPOSURES: Participants underwent integrative clinical exome (tumor and germline DNA) and transcriptome (tumor RNA) sequencing and genetic counseling. Results were discussed by a precision medicine tumor board, which made recommendations to families and their physicians. MAIN OUTCOMES AND MEASURES: Proportion of patients with potentially actionable findings, results of clinical actions based on integrative clinical sequencing, and estimated proportion of patients or their families at risk of future cancer. RESULTS: Of the 104 screened patients, 102 enrolled with 91 (89%) having adequate tumor tissue to complete sequencing. Only the 91 patients were included in all calculations, including 28 (31%) with hematological malignancies and 63 (69%) with solid tumors. Forty-two patients (46%) had actionable findings that changed their cancer management: 15 of 28 (54%) with hematological malignancies and 27 of 63 (43%) with solid tumors. Individualized actions were taken in 23 of the 91 (25%) based on actionable integrative clinical sequencing findings, including change in treatment for 14 patients (15%) and genetic counseling for future risk for 9 patients (10%). Nine of 91 (10%) of the personalized clinical interventions resulted in ongoing partial clinical remission of 8 to 16 months or helped sustain complete clinical remission of 6 to 21 months. All 9 patients and families with actionable incidental genetic findings agreed to genetic counseling and screening. CONCLUSIONS AND RELEVANCE: In this single-center case series involving young patients with relapsed or refractory cancer, incorporation of integrative clinical sequencing data into clinical management was feasible, revealed potentially actionable findings in 46% of patients, and was associated with change in treatment and family genetic counseling for a small proportion of patients. The lack of a control group limited assessing whether better clinical outcomes resulted from this approach than outcomes that would have occurred with standard care.


Subject(s)
Genetic Counseling , Neoplasms/genetics , Sequence Analysis, DNA/methods , Adolescent , Child , Child, Preschool , Chromosome Aberrations , Family , Feasibility Studies , Gene Fusion , Hematologic Neoplasms/genetics , Humans , Incidental Findings , Infant , Infant, Newborn , Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local/genetics , Neoplasms/therapy , Outcome Assessment, Health Care , Remission Induction , Young Adult
16.
Lancet Oncol ; 15(13): 1469-1480, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25456366

ABSTRACT

BACKGROUND: Improved clinical predictors for disease progression are needed for localised prostate cancer, since only a subset of patients develop recurrent or refractory disease after first-line treatment. Therefore, we undertook an unbiased analysis to identify RNA biomarkers associated with metastatic progression after prostatectomy. METHODS: Prostate cancer samples from patients treated with radical prostatectomy at three academic institutions were analysed for gene expression by a high-density Affymetrix GeneChip platform, encompassing more than 1 million genomic loci. In a discovery cohort, all protein-coding genes and known long non-coding RNAs were ranked by fold change in expression between tumours that subsequently metastasised versus those that did not. The top ranked gene was then validated for its prognostic value for metastatic progression in three additional independent cohorts. 95% of the gene expression assays were done in a Clinical Laboratory Improvements Amendments certified laboratory facility. All genes were assessed for their ability to predict metastatic progression by receiver-operating-curve area-under-the-curve analyses. Multivariate analyses were done for the primary endpoint of metastatic progression, with variables including Gleason score, preoperative prostate-specific antigen concentration, seminal vesicle invasion, surgical margin status, extracapsular extension, lymph node invasion, and expression of the highest ranked gene. FINDINGS: 1008 patients were included in the study: 545 in the discovery cohort and 463 in the validation cohorts. The long non-coding RNA SChLAP1 was identified as the highest-ranked overexpressed gene in cancers with metastatic progression. Validation in three independent cohorts confirmed the prognostic value of SChLAP1 for metastatic progression. On multivariate modelling, SChLAP1 expression (high vs low) independently predicted metastasis within 10 years (odds ratio [OR] 2·45, 95% CI 1·70-3·53; p<0·0001). The only other variable that independently predicted metastasis within 10 years was Gleason score (8-10 vs 5-7; OR 2·14, 95% CI 1·77-2·58; p<0·0001). INTERPRETATION: We identified and validated high SChLAP1 expression as significantly prognostic for metastatic disease progression of prostate cancer. Our findings suggest that further development of SChLAP1 as a potential biomarker, for treatment intensification in aggressive prostate cancer, warrants future study. FUNDING: Prostate Cancer Foundation, National Institutes of Health, Department of Defense, Early Detection Research Network, Doris Duke Charitable Foundation, and Howard Hughes Medical Institute.


Subject(s)
Biomarkers, Tumor/genetics , High-Throughput Nucleotide Sequencing , Neoplasm Recurrence, Local/genetics , Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , Aged , Case-Control Studies , Disease Progression , Follow-Up Studies , Gene Expression Profiling , Humans , Lymphatic Metastasis , Male , Middle Aged , Neoplasm Grading , Neoplasm Invasiveness , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/surgery , Neoplasm Staging , Prognosis , Prostate-Specific Antigen/blood , Prostatectomy , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/mortality , Prostatic Neoplasms/surgery , Retrospective Studies , Survival Rate
17.
Genome Res ; 21(7): 1028-41, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21724842

ABSTRACT

Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing/methods , Prostatic Neoplasms/genetics , Cell Line, Tumor , CpG Islands , DNA, Neoplasm/genetics , Epigenomics , Epithelial Cells/metabolism , Gene Expression Profiling , Gene Library , Humans , Male , Markov Chains , Neoplasm Metastasis , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Promoter Regions, Genetic , Prostate/metabolism , Prostatic Neoplasms/metabolism , Sequence Analysis, RNA , Transcription Initiation Site
18.
NAR Cancer ; 6(2): zcae023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774471

ABSTRACT

The translation of RNA by ribosomes represents a central biological process and one of the most dysregulated processes in cancer. While translation is traditionally thought to occur exclusively in the protein-coding regions of messenger RNAs (mRNAs), recent transcriptome-wide approaches have shown abundant ribosome activity across diverse stretches of RNA transcripts. The most common type of this kind of ribosome activity occurs in gene leader sequences, also known as 5' untranslated regions (UTRs) of the mRNA, that precede the main coding sequence. Translation of these upstream open reading frames (uORFs) is now known to occur in upwards of 25% of all protein-coding genes. With diverse functions from RNA regulation to microprotein generation, uORFs are rapidly igniting a new arena of cancer biology, where they are linked to cancer genetics, cancer signaling, and tumor-immune interactions. This review focuses on the contributions of uORFs and their associated 5'UTR sequences to cancer biology.

19.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585907

ABSTRACT

The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Yet, accurately delineating the variation in RNA translation represents a significant challenge. Here, we develop RiboTIE, a transformer model-based approach to map global RNA translation. We find that RiboTIE offers unparalleled precision and sensitivity for ribosome profiling data. Application of RiboTIE to normal brain and medulloblastoma cancer samples enables high-resolution insights into disease regulation of RNA translation.

20.
bioRxiv ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39314370

ABSTRACT

A major scientific drive is to characterize the protein-coding genome as it provides the primary basis for the study of human health. But the fundamental question remains: what has been missed in prior genomic analyses? Over the past decade, the translation of non-canonical open reading frames (ncORFs) has been observed across human cell types and disease states, with major implications for proteomics, genomics, and clinical science. However, the impact of ncORFs has been limited by the absence of a large-scale understanding of their contribution to the human proteome. Here, we report the collaborative efforts of stakeholders in proteomics, immunopeptidomics, Ribo-seq ORF discovery, and gene annotation, to produce a consensus landscape of protein-level evidence for ncORFs. We show that at least 25% of a set of 7,264 ncORFs give rise to translated gene products, yielding over 3,000 peptides in a pan-proteome analysis encompassing 3.8 billion mass spectra from 95,520 experiments. With these data, we developed an annotation framework for ncORFs and created public tools for researchers through GENCODE and PeptideAtlas. This work will provide a platform to advance ncORF-derived proteins in biomedical discovery and, beyond humans, diverse animals and plants where ncORFs are similarly observed.

SELECTION OF CITATIONS
SEARCH DETAIL