Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 632(8027): 1082-1091, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39143224

ABSTRACT

T-lineage acute lymphoblastic leukaemia (T-ALL) is a high-risk tumour1 that has eluded comprehensive genomic characterization, which is partly due to the high frequency of noncoding genomic alterations that result in oncogene deregulation2,3. Here we report an integrated analysis of genome and transcriptome sequencing of tumour and remission samples from more than 1,300 uniformly treated children with T-ALL, coupled with epigenomic and single-cell analyses of malignant and normal T cell precursors. This approach identified 15 subtypes with distinct genomic drivers, gene expression patterns, developmental states and outcomes. Analyses of chromatin topology revealed multiple mechanisms of enhancer deregulation that involve enhancers and genes in a subtype-specific manner, thereby demonstrating widespread involvement of the noncoding genome. We show that the immunophenotypically described, high-risk entity of early T cell precursor ALL is superseded by a broader category of 'early T cell precursor-like' leukaemia. This category has a variable immunophenotype and diverse genomic alterations of a core set of genes that encode regulators of hematopoietic stem cell development. Using multivariable outcome models, we show that genetic subtypes, driver and concomitant genetic alterations independently predict treatment failure and survival. These findings provide a roadmap for the classification, risk stratification and mechanistic understanding of this disease.


Subject(s)
Genome, Human , Genomics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Female , Humans , Male , Chromatin/genetics , Chromatin/metabolism , Enhancer Elements, Genetic/genetics , Epigenomics , Gene Expression Regulation, Leukemic , Genome, Human/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Single-Cell Analysis , Transcriptome/genetics , T-Lymphocytes/cytology , T-Lymphocytes/pathology
2.
Blood ; 139(8): 1208-1221, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34482403

ABSTRACT

Inherited predisposition to myeloid malignancies is more common than previously appreciated. We analyzed the whole-exome sequencing data of paired leukemia and skin biopsy samples from 391 adult patients from the Beat AML 1.0 consortium. Using the 2015 American College of Medical Genetics and Genomics (ACMG) guidelines for variant interpretation, we curated 1547 unique variants from 228 genes. The pathogenic/likely pathogenic (P/LP) germline variants were identified in 53 acute myeloid leukemia (AML) patients (13.6%) in 34 genes, including 6.39% (25/391) of patients harboring P/LP variants in genes considered clinically actionable (tier 1). 41.5% of the 53 patients with P/LP variants were in genes associated with the DNA damage response. The most frequently mutated genes were CHEK2 (8 patients) and DDX41 (7 patients). Pathogenic germline variants were also found in new candidate genes (DNAH5, DNAH9, DNMT3A, and SUZ12). No strong correlation was found between the germline mutational rate and age of AML onset. Among 49 patients who have a reported history of at least one family member affected with hematological malignancies, 6 patients harbored known P/LP germline variants and the remaining patients had at least one variant of uncertain significance, suggesting a need for further functional validation studies. Using CHEK2 as an example, we show that three-dimensional protein modeling can be one of the effective methodologies to prioritize variants of unknown significance for functional studies. Further, we evaluated an in silico approach that applies ACMG curation in an automated manner using the tool for assessment and (TAPES) prioritization in exome studies, which can minimize manual curation time for variants. Overall, our findings suggest a need to comprehensively understand the predisposition potential of many germline variants in order to enable closer monitoring for disease management and treatment interventions for affected patients and families.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/genetics , Age Factors , Aged , Female , Humans , Male , Middle Aged
3.
Int J Mol Sci ; 25(14)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063154

ABSTRACT

Quantitative assessment of nucleophosmin 1 (NPM1) mutation status is integral to evaluating measurable residual disease (MRD) in NPM1-mutated acute myeloid leukemia (AML) patients. In a retrospective study, leftover peripheral blood (PB) specimens (n = 40) which were collected for routine clinical diagnostic evaluations of AML disease burden were tested by both a novel automated RT-qPCR quantitative NPM1 assay (Xpert NPM1 mutation assay) and the NPM1 mutA, mutB&D MutaQuant kit. Based on a Deming regression analysis, there was a high correlation (slope = 0.92; intercept = 0.12; Pearson's r = 0.982) between the quantitative results of the Xpert NPM1 mutation assay and the NPM1 mutA, mutB&D MutaQuant kit. The Xpert test quantitative results are thus highly correlated with the comparator method and the former has potential as a useful alternative for the monitoring of AML patients with a known NPM1 mutation.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , Nuclear Proteins , Nucleophosmin , Real-Time Polymerase Chain Reaction , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Nuclear Proteins/genetics , Real-Time Polymerase Chain Reaction/methods , Retrospective Studies , Neoplasm, Residual/genetics , Neoplasm, Residual/diagnosis , Male , Female , Middle Aged
4.
Int J Mol Sci ; 24(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37685882

ABSTRACT

Cytogenetically cryptic acute promyelocytic leukemia (APL) is rare, characterized by typical clinical and morphological features, but lacks t(15;17)(q24;q21)/PML::RARA translocation seen in conventional karyotyping or FISH. The prompt diagnosis and treatment of APL are critical due to life-threatening complications associated with this disease. However, cryptic APL cases remain a diagnostic challenge that could mislead the appropriate treatment. We describe four cryptic APL cases and review reported cases in the literature. Reverse transcriptase polymerase chain reaction (RT-PCR) is the most efficient diagnostic modality to detect these cases, and alternative methods are also discussed. This study highlights the importance of using parallel testing methods to diagnose cryptic APL cases accurately and effectively.


Subject(s)
Leukemia, Promyelocytic, Acute , Humans , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/genetics , Karyotyping
5.
Am J Transplant ; 21(12): 3894-3906, 2021 12.
Article in English | MEDLINE | ID: mdl-33961341

ABSTRACT

Graft-versus-host disease after liver transplantation (LT-GVHD) is rare, frequently fatal, and associated with bone marrow failure (BMF), cytopenias, and hyperferritinemia. Given hyperferritinemia and cytopenias are present in hemophagocytic lymphohistiocytosis (HLH), and somatic mutations in hematopoietic cells are associated with hyperinflammatory responses (clonal hematopoiesis of indeterminate potential, CHIP), we identified the frequency of hemophagocytosis and CHIP mutations in LT-GVHD. We reviewed bone marrow aspirates and biopsies, quantified blood/marrow chimerism, and performed next-generation sequencing (NGS) with a targeted panel of genes relevant to myeloid malignancies, CHIP, and BMF. In all, 12 marrows were reviewed from 9 LT-GVHD patients. In all, 10 aspirates were evaluable for hemophagocytosis; 7 had adequate DNA for NGS. NGS was also performed on marrow from an LT cohort (n = 6) without GVHD. Nine of 10 aspirates in LT-GVHD patients showed increased hemophagocytosis. Five (71%) of 7 with LT-GVHD had DNMT3A mutations; only 1 of 6 in the non-GVHD LT cohort demonstrated DNMT3A mutation (p = .04). Only 1 LT-GVHD patient survived. BMF with HLH features was associated with poor hematopoietic recovery, and DNMT3A mutations were over-represented, in LT-GVHD patients. Identification of HLH features may guide prognosis and therapeutics. Further studies are needed to clarify the origin and impact of CHIP mutations on the hyperinflammatory state.


Subject(s)
Graft vs Host Disease , Liver Transplantation , Lymphohistiocytosis, Hemophagocytic , Bone Marrow Failure Disorders , Bone Marrow Transplantation/adverse effects , Graft vs Host Disease/genetics , Humans , Liver Transplantation/adverse effects , Lymphohistiocytosis, Hemophagocytic/genetics , Mutation/genetics
6.
Proc Natl Acad Sci U S A ; 114(44): 11751-11756, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078326

ABSTRACT

Developing tools to accurately predict the clinical prevalence of drug-resistant mutations is a key step toward generating more effective therapeutics. Here we describe a high-throughput CRISPR-Cas9-based saturated mutagenesis approach to generate comprehensive libraries of point mutations at a defined genomic location and systematically study their effect on cell growth. As proof of concept, we mutagenized a selected region within the leukemic oncogene BCR-ABL1 Using bulk competitions with a deep-sequencing readout, we analyzed hundreds of mutations under multiple drug conditions and found that the effects of mutations on growth in the presence or absence of drug were critical for predicting clinically relevant resistant mutations, many of which were cancer adaptive in the absence of drug pressure. Using this approach, we identified all clinically isolated BCR-ABL1 mutations and achieved a prediction score that correlated highly with their clinical prevalence. The strategy described here can be broadly applied to a variety of oncogenes to predict patient mutations and evaluate resistance susceptibility in the development of new therapeutics.


Subject(s)
CRISPR-Cas Systems/genetics , Drug Resistance, Neoplasm/genetics , Mutagenesis/genetics , Animals , Antineoplastic Agents/pharmacology , CRISPR-Cas Systems/drug effects , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/drug effects , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drug Resistance, Neoplasm/drug effects , Fusion Proteins, bcr-abl/genetics , Leukemia/drug therapy , Leukemia/genetics , Mice , Mutagenesis/drug effects , Oncogenes/genetics , Point Mutation/drug effects , Point Mutation/genetics
7.
Am J Hematol ; 94(8): 913-920, 2019 08.
Article in English | MEDLINE | ID: mdl-31145495

ABSTRACT

Acute myeloid leukemia (AML) is a genetically heterogeneous disease with a clinical course predicted by recurrent cytogenetic abnormalities and/or gene mutations. The NPM1 insertion mutations define the largest distinct genetic subset, ∼30% of AML, and is considered a favorable risk marker if there is no (or low allelic ratio) FLT3 internal tandem duplication (FLT3 ITD) mutation. However, ∼40% of patients with mutated NPM1 without FLT3 ITD still relapse, and the factors that drive relapse are still not fully understood. We used a next-generation sequencing panel to examine mutations at diagnosis; clearance of mutations after therapy, and gain/loss of mutations at relapse to prioritize mutations that contribute to relapse. Triple mutation of NPM1, DNMT3A and IDH1/2 showed a trend towards inferior overall survival in our discovery dataset, and was significantly associated with reduced OS in a large independent validation cohort. Analysis of relative variant allele frequencies suggests that early mutation and expansion of DNMT3A and IDH1/2 prior to acquisition of NPM1 mutation leads to increased risk of relapse. This subset of patients may benefit from allogeneic stem cell transplant or clinical trials with IDH inhibitors.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/mortality , Nuclear Proteins/genetics , Adult , Aged , DNA Methyltransferase 3A , Databases, Genetic , Female , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Mutation , Nucleophosmin , Survival Analysis
8.
Am J Hematol ; 94(8): 902-912, 2019 08.
Article in English | MEDLINE | ID: mdl-31124175

ABSTRACT

In acute myeloid leukemia (AML), the assessment of post-treatment minimal residual disease (MRD) may inform a more effective management approach. We investigated the prognostic utility of next-generation sequencing (NGS)-based MRD detection undertaken before hematopoietic stem cell transplantation (HSCT). Forty-two AML subjects underwent serial disease monitoring both by standard methods, and a targeted 42-gene NGS assay, able to detect leukemia-specific mutant alleles (with >0.5% VAF) (mean 5.1 samples per subject). The prognostic relevance of any persisting diagnostic mutation before transplant (≤27 days) was assessed during 22.1 months (median) of post-transplant follow-up. The sensitivity of the NGS assay (27 MRD-positive subjects) exceeded that of the non-molecular methods (morphology, FISH, and flow cytometry) (11 positive subjects). Only one of the 13 subjects who relapsed after HSCT was NGS MRD-negative (92% assay sensitivity). The cumulative incidence of post-transplant leukemic relapse was significantly higher in the pre-transplant NGS MRD-positive (vs MRD-negative) subjects (P = .014). After adjusting for TP53 mutation and transplant conditioning regimen, NGS MRD-positivity retained independent prognostic significance for leukemic relapse (subdistribution hazard ratio = 7.3; P = .05). The pre-transplant NGS MRD-positive subjects also had significantly shortened progression-free survival (P = .038), and marginally shortened overall survival (P = .068). In patients with AML undergoing HSCT, the pre-transplant persistence of NGS-defined MRD imparts a significant, sensitive, strong, and independent increased risk for subsequent leukemic relapse and death. Given that NGS can simultaneously detect multiple leukemia-associated mutations, it can be used in the majority of AML patients to monitor disease burdens and inform treatment decisions.


Subject(s)
Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing/methods , Leukemia, Myeloid, Acute/genetics , Neoplasm, Residual/genetics , Adult , Aged , Cohort Studies , Female , Humans , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Mutation , Neoplasm, Residual/epidemiology , Neoplasm, Residual/therapy , Recurrence , Retrospective Studies , Transplantation Conditioning/methods
10.
Genet Med ; 18(12): 1206-1213, 2016 12.
Article in English | MEDLINE | ID: mdl-27124787

ABSTRACT

PURPOSE: The College of American Pathologists offers blinded proficiency testing (PT) for laboratories performing HFE genetic tests for hereditary hemochromatosis (common C282Y and H63D variants). This study used 10 years of PT data to determine laboratory performance for HFE analytical genotyping and clinical interpretation. METHODS: Laboratories were graded for accuracy of genotype determination (six possible C282Y/H63D genotypes) and clinical interpretation regarding whether the genotype was likely to have contributed to iron overload in a hypothetical patient. RESULTS: The analytical genotyping error rate was low (0.73%) in 7,663 results (from 257 unique laboratories). Genotyping errors were significantly higher in C282Y heterozygous, H63D homozygous, and C282Y homozygous samples, in non-American laboratories, and in laboratories with lower testing volume. Analytical sensitivity and specificity were >98.5 and >99.5%. The interpretive error rate (4.3%) was higher than the genotyping error rate, with two problematic genotypes (C282Y heterozygous and H63D homozygous) accounting for 77% of total interpretive errors. There was a time-dependent improvement in the interpretation of the clinical significance of HFE genotypes. CONCLUSIONS: HFE molecular genetic testing, performed by non-US Food and Drug Administration-approved laboratory-developed tests, demonstrated excellent accuracy, sensitivity, and specificity. Clinical interpretations were more heterogeneous, probably owing to the low clinical penetrance of some common HFE genotypes.Genet Med 18 12, 1206-1213.


Subject(s)
Genetic Testing , Hemochromatosis Protein/genetics , Hemochromatosis/diagnosis , Hemochromatosis/genetics , Genotype , Hemochromatosis/pathology , Humans , Mutation, Missense
11.
Am J Hematol ; 91(2): 211-9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26573090

ABSTRACT

Mutations in the calreticulin gene (CALR) were recently identified in approximately 70-80% of patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis. All frameshift mutations generate a recurring novel C-terminus. Here we provide evidence that mutant calreticulin does not accumulate efficiently in cells and is abnormally enriched in the nucleus and extracellular space compared to wildtype calreticulin. The main determinant of these findings is the loss of the calcium-binding and KDEL domains. Expression of type I mutant CALR in Ba/F3 cells confers minimal IL-3-independent growth. Interestingly, expression of type I and type II mutant CALR in a nonhematopoietic cell line does not directly activate JAK/STAT signaling compared to wildtype CALR and JAK2-V617F expression. These results led us to investigate paracrine mechanisms of JAK/STAT activation. Here we show that conditioned media from cells expressing type I mutant CALR exaggerate cytokine production from normal monocytes with or without treatment with a toll-like receptor agonist. These effects are not dependent on the novel C-terminus. These studies offer novel insights into the mechanism of JAK/STAT activation in patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis.


Subject(s)
Calreticulin/genetics , Frameshift Mutation , Monocytes/metabolism , Paracrine Communication/genetics , Blotting, Western , Bone Marrow/metabolism , Calcium/metabolism , Calreticulin/metabolism , Cell Culture Techniques , Cell Nucleus/metabolism , Culture Media, Conditioned , Cytokines/biosynthesis , Extracellular Space/metabolism , HEK293 Cells , HeLa Cells , Humans , Immunohistochemistry , Janus Kinase 2/genetics , Monocytes/physiology , Primary Myelofibrosis/genetics , Primary Myelofibrosis/immunology , Protein Binding , Real-Time Polymerase Chain Reaction , Thrombocythemia, Essential/genetics , Thrombocythemia, Essential/immunology
13.
Cancer Cell ; 42(9): 1486-1488, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39214096
14.
Blood ; 118(19): 5250-4, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-21908430

ABSTRACT

Chronic myeloid leukemia is effectively treated with imatinib, but reactivation of BCR-ABL frequently occurs through acquisition of kinase domain mutations. The additional approved ABL tyrosine kinase inhibitors (TKIs) nilotinib and dasatinib, along with investigational TKIs such as ponatinib (AP24534) and DCC-2036, support the possibility that mutation-mediated resistance in chronic myeloid leukemia can be fully controlled; however, the molecular events underlying resistance in patients lacking BCR-ABL point mutations are largely unknown. We previously reported on an insertion/truncation mutant, BCR-ABL(35INS), in which structural integrity of the kinase domain is compromised and all ABL sequence beyond the kinase domain is eliminated. Although we speculated that BCR-ABL(35INS) is kinase-inactive, recent reports propose this mutant contributes to ABL TKI resistance. We present cell-based and biochemical evidence establishing that BCR-ABL(35INS) is kinase-inactive and does not contribute to TKI resistance, and we find that detection of BCR-ABL(35INS) does not consistently track with or explain resistance in clinical samples from chronic myeloid leukemia patients.


Subject(s)
Genes, abl , INDEL Mutation , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Adult , Aged , Base Sequence , Benzamides , Cell Line, Tumor , DNA, Neoplasm/genetics , Drug Resistance, Neoplasm/genetics , Female , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology , Male , Middle Aged , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Young Adult
15.
Blood ; 118(24): 6392-8, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-21860020

ABSTRACT

Proinflammatory cytokines such as TNFα are elevated in patients with myeloproliferative neoplasms (MPN), but their contribution to disease pathogenesis is unknown. Here we reveal a central role for TNFα in promoting clonal dominance of JAK2(V617F) expressing cells in MPN. We show that JAK2(V617F) kinase regulates TNFα expression in cell lines and primary MPN cells and TNFα expression is correlated with JAK2(V617F) allele burden. In clonogenic assays, normal controls show reduced colony formation in the presence of TNFα while colony formation by JAK2(V617F)-positive progenitor cells is resistant or stimulated by exposure to TNFα. Ectopic JAK2(V617F) expression confers TNFα resistance to normal murine progenitor cells and overcomes inherent TNFα hypersensitivity of Fanconi anemia complementation group C deficient progenitors. Lastly, absence of TNFα limits clonal expansion and attenuates disease in a murine model of JAK2(V617F)-positive MPN. Altogether our data are consistent with a model where JAK2(V617F) promotes clonal selection by conferring TNFα resistance to a preneoplastic TNFα sensitive cell, while simultaneously generating a TNFα-rich environment. Mutations that confer resistance to environmental stem cell stressors are a recognized mechanism of clonal selection and leukemogenesis in bone marrow failure syndromes and our data suggest that this mechanism is also critical to clonal selection in MPN.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Janus Kinase 2/metabolism , Myeloproliferative Disorders/metabolism , Tumor Necrosis Factor-alpha/metabolism , Amino Acid Substitution , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Line, Tumor , Cells, Cultured , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group C Protein/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/blood , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/drug therapy , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics , Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mice , Mice, Knockout , Mutant Proteins/metabolism , Myeloid Progenitor Cells/metabolism , Myeloproliferative Disorders/blood , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Point Mutation , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Tumor Necrosis Factor-alpha/genetics
16.
Blood Cancer J ; 13(1): 59, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37088803

ABSTRACT

Treated AML patients often have measurable residual disease (MRD) due to persisting low-level clones. This study assessed whether residual post-treatment somatic mutations, detected by NGS, were significantly prognostic for subsequent clinical outcomes. AML patients (n = 128) underwent both pre-and post-treatment testing with the same 42-gene MRD-validated NGS assay. After induction, 59 (46%) patients were mutation-negative (0.0024 VAF detection limit) and 69 (54%) had ≥1 persisting NGS-detectable mutation. Compared with NGS-negative patients, NGS-positive patients had shorter overall survival (17 months versus median not reached; P = 0.004; hazard ratio = 2.2 [95% CI: 1.3-3.7]) and a shorter time to relapse (14 months versus median not reached; P = 0.014; HR = 1.9 [95% CI: 1.1-3.1]). Among 95 patients with a complete morphologic remission (CR), 43 (45%) were MRD-positive by NGS and 52 (55%) were MRD-negative. These MRD-positive CR patients had a shorter overall survival (16.8 months versus median not reached; P = 0.013; HR = 2.1 [95% CI: 1.2-3.9]) than did the MRD-negative CR patients. Post-treatment persisting MRD positivity, defined by the same NGS-based test used at diagnosis, is thus a more sensitive biomarker for low-level leukemic clones compared to traditional non-molecular methods and is prognostic of subsequent relapse and death.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Prognosis , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Recurrence , Neoplasm, Residual/diagnosis
17.
Blood Adv ; 7(9): 1899-1909, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36441905

ABSTRACT

Risk stratification in acute myeloid leukemia (AML) remains principle in survival prognostication and treatment selection. The 2022 European LeukemiaNet (ELN) recommendations were recently published, with notable updates to risk group assignment. The complexity of risk stratification and comparative outcomes between the 2022 and 2017 ELN guidelines remains unknown. This comparative analysis evaluated outcomes between the 2017 and 2022 ELN criteria in patients enrolled within the multicenter Beat AML cohort. Five hundred thirteen patients were included. Most patients had 1 or 2 ELN risk-defining abnormalities. In patients with ≥2 ELN risk-defining mutations, 44% (n = 132) had mutations spanning multiple ELN risk categories. Compared with ELN 2017 criteria, the updated ELN 2022 guidelines changed the assigned risk group in 15% of patients, including 10%, 26%, and 6% of patients categorized as being at ELN 2017 favorable-, intermediate-, and adverse-risk, respectively. The median overall survival across ELN 2022 favorable-, intermediate-, and adverse-risk groups was not reached, 16.8, and 9.7 months, respectively. The ELN 2022 guidelines more accurately stratified survival between patients with intermediate- or adverse-risk AML treated with induction chemotherapy compared with ELN 2017 guidelines. The updated ELN 2022 guidelines better stratify survival between patients with intermediate- or adverse-risk AML treated with induction chemotherapy. The increased complexity of risk stratification with inclusion of additional cytogenetic and molecular aberrations necessitates clinical workflows simplifying risk stratification.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Risk Factors , Mutation , Cytogenetics , Induction Chemotherapy
18.
Blood Adv ; 7(20): 6048-6054, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37459200

ABSTRACT

Next-generation sequencing (NGS) to identify pathogenic mutations is an integral part of acute myeloid leukemia (AML) therapeutic decision-making. The concordance in identifying pathogenic mutations among different NGS platforms at different diagnostic laboratories has been studied in solid tumors but not in myeloid malignancies to date. To determine this interlaboratory concordance, we collected a total of 194 AML bone marrow or peripheral blood samples from newly diagnosed patients with AML enrolled in the Beat AML Master Trial (BAMT) at 2 academic institutions. We analyzed the diagnostic samples from patients with AML for the detection of pathogenic myeloid mutations in 8 genes (DNMT3A, FLT3, IDH1, IDH2, NPM1, TET2, TP53, and WT1) locally using the Hematologic Neoplasm Mutation Panel (50-gene myeloid indication filter) (site 1) or the GeneTrails Comprehensive Heme Panel (site 2) at the 2 institutions and compared them with the central results from the diagnostic laboratory for the BAMT, Foundation Medicine, Inc. The overall percent agreement was over 95% each in all 8 genes, with almost perfect agreement (κ > 0.906) in all but WT1, which had substantial agreement (κ = 0.848) when controlling for site. The minimal discrepancies were due to reporting variants of unknown significance (VUS) for the WT1 and TP53 genes. These results indicate that the various NGS methods used to analyze samples from patients with AML enrolled in the BAMT show high concordance, a reassuring finding given the wide use of NGS for therapeutic decision-making in AML.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Laboratories , Prognosis , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , High-Throughput Nucleotide Sequencing/methods
19.
Blood ; 116(17): 3278-85, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-20519627

ABSTRACT

Point mutations in the kinase domain of BCR-ABL are the most common mechanism of drug resistance in chronic myeloid leukemia (CML) patients treated with ABL kinase inhibitors, including imatinib. It has also been shown in vitro that mutations outside the kinase domain in the neighboring linker, SH2, SH3, and Cap domains can confer imatinib resistance. In the context of ABL, these domains have an autoinhibitory effect on kinase activity, and mutations in this region can activate the enzyme. To determine the frequency and relevance to resistance of regulatory domain mutations in CML patients on imatinib, we screened for such mutations in a cohort of consecutive CML patients with various levels of response. Regulatory domain mutations were detected in 7 of 98 patients, whereas kinase domain mutations were detected in 29. One mutation (T212R) conferred in vitro tyrosine kinase inhibitor resistance and was associated with relapse, whereas most other mutations did not affect drug sensitivity. Mechanistic studies showed that T212R increased the activity of ABL and BCR-ABL and that T212R-induced resistance may be partially the result of stabilization of an active kinase conformation. Regulatory domain mutations are uncommon but may explain resistance in some patients without mutations in the kinase domain.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mutation , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , src Homology Domains , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Benzamides , Cell Line , Cohort Studies , Female , Fusion Proteins, bcr-abl/chemistry , Humans , Imatinib Mesylate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Male , Middle Aged , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Young Adult
20.
Blood ; 116(22): e111-7, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-20720184

ABSTRACT

Serial quantitation of BCR-ABL mRNA levels is an important indicator of therapeutic response for patients with chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, but there is substantial variation in the real-time quantitative polymerase chain reaction methodologies used by different testing laboratories. To help improve the comparability of results between centers we sought to develop accredited reference reagents that are directly linked to the BCR-ABL international scale. After assessment of candidate cell lines, a reference material panel comprising 4 different dilution levels of freeze-dried preparations of K562 cells diluted in HL60 cells was prepared. After performance evaluation, the materials were assigned fixed percent BCR-ABL/control gene values according to the International Scale. A recommendation that the 4 materials be established as the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL translocation by real-time quantitative polymerase chain reaction was approved by the Expert Committee on Biological Standardization of the World Health Organization in November 2009. We consider that the development of these reagents is a significant milestone in the standardization of this clinically important test, but because they are a limited resource we suggest that their availability is restricted to manufacturers of secondary reference materials.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/standards , Cell Line , Humans , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/methods , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL