Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 33(9): e81, 2005 May 19.
Article in English | MEDLINE | ID: mdl-15905471

ABSTRACT

The use of oligonucleotide-assisted cleavage and ligation (ONCL), a novel approach to the capture of gene repertoires, in the construction of a phage-display immune antibody library is described. ONCL begins with rapid amplification of cDNA ends to amplify all members equally. A single, specific cut near 5' and/or 3' end of each gene fragment (in single stranded form) is facilitated by hybridization with an appropriate oligonucleotide adapter. Directional cloning of targeted DNA is accomplished by ligation of a partially duplex DNA molecule (containing suitable restriction sites) and amplification with primers in constant regions. To demonstrate utility and reliability of ONCL, a human antibody repertoire was cloned from IgG mRNA extracted from human B-lymphocytes engrafted in Trimera mice. These mice were transplanted with peripheral blood lymphocytes from Candida albicans infected individuals and subsequently immunized with C.albicans glyceraldehyde-3-phosphate dehydrogenase (GAPDH). DNA sequencing showed that ONCL resulted in efficient capture of gene repertoires. Indeed, full representation of all V(H) families/segments was observed showing that ONCL did not introduce cloning biases for or against any V(H) family. We validated the efficiency of ONCL by creating a functional Fab phage-display library with a size of 3.3 x 10(10) and by selecting five unique Fabs against GAPDH antigen.


Subject(s)
Cloning, Molecular/methods , DNA, Complementary , Genes, Immunoglobulin , Oligonucleotides/chemistry , Peptide Library , Adolescent , Adult , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity , Biotechnology/methods , Candida albicans/enzymology , Candida albicans/immunology , Female , Glyceraldehyde-3-Phosphate Dehydrogenases/immunology , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/genetics , Mice , Mice, Inbred BALB C , Middle Aged , Oligonucleotides/metabolism , Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL