Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
BMC Genet ; 21(Suppl 2): 150, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33339496

ABSTRACT

BACKGROUND: Females of the Mediterranean fruit fly Ceratitis capitata (Medfly) are major agricultural pests, as they lay eggs into the fruit crops of hundreds of plant species. In Medfly, female sex determination is based on the activation of Cctransformer (Cctra). A maternal contribution of Cctra is required to activate Cctra itself in the XX embryos and to start and epigenetically maintain a Cctra positive feedback loop, by female-specific alternative splicing, leading to female development. In XY embryos, the male determining Maleness-on-the-Y gene (MoY) blocks this activation and Cctra produces male-specific transcripts encoding truncated CcTRA isoforms and male differentiation occurs. RESULTS: With the aim of inducing frameshift mutations in the first coding exon to disrupt both female-specific and shorter male-specific CcTRA open reading frames (ORF), we injected Cas9 ribonucleoproteins (Cas9 and single guide RNA, sgRNA) in embryos. As this approach leads to mostly monoallelic mutations, masculinization was expected only in G1 XX individuals carrying biallelic mutations, following crosses of G0 injected individuals. Surprisingly, these injections into XX-only embryos led to G0 adults that included not only XX females but also 50% of reverted fertile XX males. The G0 XX males expressed male-specific Cctra transcripts, suggesting full masculinization. Interestingly, out of six G0 XX males, four displayed the Cctra wild type sequence. This finding suggests that masculinization by Cas9-sgRNA injections was independent from its mutagenic activity. In line with this observation, embryonic targeting of Cctra in XX embryos by a dead Cas9 (enzymatically inactive, dCas9) also favoured a male-specific splicing of Cctra, in both embryos and adults. CONCLUSIONS: Our data suggest that the establishment of Cctra female-specific autoregulation during the early embryogenesis has been repressed in XX embryos by the transient binding of the Cas9-sgRNA on the first exon of the Cctra gene. This hypothesis is supported by the observation that the shift of Cctra splicing from female to male mode is induced also by dCas9. Collectively, the present findings corroborate the idea that a transient embryonic inactivation of Cctra is sufficient for male sex determination.


Subject(s)
CRISPR-Cas Systems , Ceratitis capitata/genetics , Sex Determination Processes , Alternative Splicing , Animals , Animals, Genetically Modified , CRISPR-Associated Protein 9 , Female , Genes, Insect , Male , RNA, Guide, Kinetoplastida/genetics
2.
Arch Insect Biochem Physiol ; 104(2): e21667, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32100335

ABSTRACT

The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), is the most destructive insect pest of olive cultivation, causing significant economic and production losses. Here, we present the establishment of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 methodology for gene disruption in this species. We performed targeted mutagenesis of the autosomal gene white (Bo-we), by injecting into early embryos in vitro preassembled and solubilized Cas9 ribonucleoprotein complexes loaded with two gene-specific single-guide RNAs. Gene disruption of Bo-we led to somatic mosaicism of the adult eye color. Large eye patches or even an entire eye lost the iridescent reddish color, indicating the successful biallelic mutagenesis in somatic cells. Cas9 induced either indels in each of the two simultaneously targeted Bo-we sites or a large deletion of the intervening region. This study demonstrates the first efficient implementation of the CRISPR/Cas9 technology in the olive fly, providing new opportunities towards the development of novel genetic tools for its control.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , Insect Proteins/genetics , Mutagenesis , Ribonucleoproteins/genetics , Tephritidae/genetics , Animals
3.
PLoS Negl Trop Dis ; 15(9): e0009698, 2021 09.
Article in English | MEDLINE | ID: mdl-34529653

ABSTRACT

In the last decades, the colonization of Mediterranean Europe and of other temperate regions by Aedes albopictus created an unprecedented nuisance problem in highly infested areas and new public health threats due to the vector competence of the species. The Sterile Insect Technique (SIT) and the Incompatible Insect Technique (IIT) are insecticide-free mosquito-control methods, relying on mass release of irradiated/manipulated males, able to complement existing and only partially effective control tools. The validation of these approaches in the field requires appropriate experimental settings, possibly isolated to avoid mosquito immigration from other infested areas, and preliminary ecological and entomological data. We carried out a 4-year study in the island of Procida (Gulf of Naples, Italy) in strict collaboration with local administrators and citizens to estimate the temporal dynamics, spatial distribution, and population size of Ae. albopictus and the dispersal and survival of irradiated males. We applied ovitrap monitoring, geo-spatial analyses, mark-release-recapture technique, and a citizen-science approach. Results allow to predict the seasonal (from April to October, with peaks of 928-9,757 males/ha) and spatial distribution of the species, highlighting the capacity of Ae. albopictus population of Procida to colonize and maintain high frequencies in urban as well as in sylvatic inhabited environments. Irradiated males shown limited ability to disperse (mean daily distance travelled <60m) and daily survival estimates ranging between 0.80 and 0.95. Overall, the ecological characteristics of the island, the acquired knowledge on Ae. albopictus spatial and temporal distribution, the high human and Ae. albopictus densities and the positive attitude of the resident population in being active parts in innovative mosquito control projects provide the ground for evidence-based planning of the interventions and for the assessment of their effectiveness. In addition, the results highlight the value of creating synergies between research groups, local administrators, and citizens for affordable monitoring (and, in the future, control) of mosquito populations.


Subject(s)
Aedes/physiology , Mosquito Control/methods , Aedes/growth & development , Animal Distribution , Animals , Ecology , Environment , Female , Humans , Islands , Italy , Male , Population Density , Residence Characteristics , Seasons
4.
Science ; 365(6460): 1457-1460, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31467189

ABSTRACT

In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest Ceratitis capitata (Mediterranean fruit fly, or Medfly), we identified a Y-linked gene, Maleness-on-the-Y (MoY), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of MoY in XY embryos causes feminization, whereas overexpression of MoY in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Y chromosome can be transmitted by XY females. MoY is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests.


Subject(s)
Ceratitis capitata/genetics , Genes, Y-Linked , Sex Determination Processes , Y Chromosome/genetics , Animals , Conserved Sequence , Embryo, Nonmammalian , Female , Genes, Insect , Male , RNA Interference
5.
Sci Rep ; 7(1): 10061, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855635

ABSTRACT

The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.


Subject(s)
Base Sequence , CRISPR-Cas Systems , Ceratitis capitata/genetics , Gene Editing/methods , Ribonucleoproteins/genetics , Sequence Deletion , Alleles , Animals , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Ceratitis capitata/growth & development , Ceratitis capitata/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , DNA End-Joining Repair , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Embryo, Nonmammalian , Germ-Line Mutation , Larva/genetics , Larva/growth & development , Larva/metabolism , Pest Control/methods , Phenotype , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Ribonucleoproteins/administration & dosage , Ribonucleoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL