Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lancet Oncol ; 23(3): e129-e143, 2022 03.
Article in English | MEDLINE | ID: mdl-35240088

ABSTRACT

Timing chemotherapy on the basis of the body's intrinsic circadian clock-ie, chronomodulated chemotherapy-might improve efficacy and reduce treatment toxicity. This systematic review summarises the available clinical evidence on the effects of chronomodulated chemotherapy from randomised, controlled trials in adult patients with cancer, published between the date of database inception and June 1, 2021. This study complies with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was registered on the International Prospective Register of Systematic Reviews (CRD42020177878). The protocol was published on Oct 21, 2020, before study initiation. The primary outcome measures comprised toxicity incidence, overall survival, progression-free survival, and objective response rate. Of 1455 identified abstracts, 18 studies including 2547 patients were selected. Studies were heterogeneous in study design, treatment, and population. 14 (77%) of 18 studies reported differences among groups in toxicity. 11 (61%) studies reported that chronomodulated chemotherapy resulted in a significant decrease in toxicity while maintaining anti-cancer activity. Two (11%) studies showed that chronomodulated chemotherapy reduced some toxic effects but increased others, and one (6%) study reported worse toxicity outcomes than standard chemotherapy. Three (17%) studies reported improved efficacy (survival measures, objective response rate, or time to treatment failure) of chronomodulated chemotherapy, and no studies reported a decrease in efficacy. In conclusion, most studies provide evidence of the reduction of toxicity resulting from chronomodulated chemotherapy, while efficacy is maintained. More and larger, carefully designed, randomised, controlled trials are needed to provide recommendations for clinical practice.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Humans
2.
Curr Heart Fail Rep ; 19(3): 136-145, 2022 06.
Article in English | MEDLINE | ID: mdl-35355205

ABSTRACT

PURPOSE OF REVIEW: The prevalence of cancer therapy-related cardiac dysfunction (CTRCD) is increasing due to improved cancer survival. Serial monitoring of cardiac function is essential to detect CTRCD, guiding timely intervention strategies. Multigated radionuclide angiography (MUGA) has been the main screening tool using left ventricular ejection fraction (LVEF) to monitor cardiac dysfunction. However, transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR) may be more suitable for serial assessment. We aimed to assess the concordance between different non-radiating imaging modalities with MUGA to determine whether they can be used interchangeably. RECENT FINDINGS: In order to identify relevant studies, a PubMed search was performed. We included cross-sectional studies comparing MUGA LVEF to that of 2D TTE, 3D TTE, and CMR. From 470 articles, 22 were selected, comprising 1017 patients in total. Among others, this included three 3D TTE, seven 2D harmonic TTE + contrast (2DHC), and seven CMR comparisons. The correlations and Bland-Altman limits of agreement varied for CMR but were stronger for 3D TTE and 2DHC. Our findings suggest that MUGA and CMR should not be used interchangeably whereas 3D TTE and 2DHC are appropriate alternatives following an initial MUGA scan. We propose a multimodality diagnostic imaging strategy for LVEF monitoring in patients undergoing cancer treatment.


Subject(s)
Heart Diseases , Heart Failure , Neoplasms , Ventricular Dysfunction, Left , Cross-Sectional Studies , Humans , Neoplasms/complications , Neoplasms/diagnostic imaging , Stroke Volume , Ventricular Function, Left
3.
EBioMedicine ; 91: 104556, 2023 May.
Article in English | MEDLINE | ID: mdl-37075492

ABSTRACT

BACKGROUND: Circadian (24-h) rhythms are important regulators in physiology and disease, but systemic disease may disrupt circadian rhythmicity. Heart failure (HF) is a systemic disease affecting hormonal regulation. We investigate whether HF affects the rhythmic expression of melatonin and cortisol, main endocrine products of the central clock, and cardiac-specific troponin in patients. We corroborate the functionality of the peripheral clock directly in the organs of translational models, inaccessible in human participants. METHODS: We included 46 HF patients (71.7% male, median age of 60 years, NYHA class II (32.6%) or III (67.4%), ischemic cardiomyopathy (43.5%), comorbidities: diabetes 21.7%, atrial fibrillation 30.4%), and 24 matched controls. Blood was collected at seven time-points during a 24-h period (totalling 320 HF and 167 control samples) for melatonin, cortisol, and cardiac troponin T (cTnT) measurements after which circadian rhythms were assessed through cosinor analyses, both on the individual and the group level. Next, we analysed peripheral circadian clock functionality using cosinor analysis in male animal HF models: nocturnal mice and diurnal zebrafish, based on expression of core clock genes in heart, kidneys, and liver, every 4 h during a 24-h period in a light/darkness synchronised environment. FINDINGS: Melatonin and cortisol concentrations followed a physiological 24-h pattern in both patients and controls. For melatonin, acrophase occurred during the night for both groups, with significantly decreased amplitude (median 5.2 vs 8.8, P = 0.0001) and circadian variation ([maximum]/[minimum]) in heart failure patients. For cortisol, mesor showed a significant increase for HF patients (mean 331.9 vs 275.1, P = 0.017) with a difference of 56.8 (95% CI 10.3-103.3) again resulting in a relatively lower variation: median 3.9 vs 6.3 (P = 0.0058). A nocturnal blood pressure dip was absent in 77.8% of HF patients. Clock gene expression profiles (Bmal, Clock, Per, Cry) were similar and with expected phase relations in animal HF models and controls, demonstrating preserved peripheral clock functionality in HF. Furthermore, oscillations in diurnal zebrafish were expectedly in opposite phases to those of nocturnal mice. Concordantly, cTnT concentrations in HF patients revealed significant circadian oscillations. INTERPRETATION: Central clock output is dampened in HF patients while the molecular peripheral clock, as confirmed in animal models, remains intact. This emphasises the importance of taking timing into account in research and therapy for HF, setting the stage for another dimension of diagnostic, prognostic and therapeutic approaches. FUNDING: Hartstichting.


Subject(s)
Circadian Clocks , Heart Failure , Melatonin , Humans , Male , Mice , Animals , Middle Aged , Female , Circadian Clocks/physiology , Zebrafish/metabolism , Hydrocortisone , Circadian Rhythm/genetics
4.
JMIR Res Protoc ; 9(10): e18023, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33084590

ABSTRACT

BACKGROUND: Chronomodulated chemotherapy aims to achieve maximum drug safety and efficacy by adjusting the time of treatment to an optimal biological time as determined by the circadian clock. Although it is a promising alternative to conventional (non-time-stipulated) chemotherapy in several instances, the lack of scientific consensus and the increased logistical burden of timed administration limit the use of a chronomodulated administration protocol. OBJECTIVE: With the goal to increase scientific consensus on this subject, we plan to conduct a systematic review of the current literature to compare the drug safety and efficacy of chronomodulated chemotherapy with those of conventional chemotherapy. METHODS: This systematic review will comply with the PRISMA (Preferred Reporting Items for the Systematic Reviews and Meta-Analysis) guidelines. In order to identify relevant studies, we conducted a comprehensive search in PubMed and Embase on May 18, 2020. We included clinical studies that compare either the safety or efficacy of chronomodulated chemotherapy with that of conventional chemotherapy. Potential studies will be reviewed and screened by 2 independent reviewers. Quality assessment will be performed using the National Institutes of Health's Study Quality Assessment Tool (Quality Assessment of Controlled Intervention Studies). Disagreements will be resolved by consulting a third independent reviewer. RESULTS: This protocol has received funding, and the search for studies from databases commenced on May 18, 2020. The systematic review is planned to be completed by October 31, 2020. CONCLUSIONS: In this systematic review, we will compare drug safety and drug efficacy for cancer patients who were administered either chronomodulated chemotherapy or conventional chemotherapy. Moreover, we will highlight the outcomes and quality of the selected trials for this review. TRIAL REGISTRATION: PROSPERO International Prospective Register of Systematic Reviews CRD42020177878; https://tinyurl.com/y53w9nq6. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/18023.

5.
ESC Heart Fail ; 7(3): 1224-1233, 2020 06.
Article in English | MEDLINE | ID: mdl-32233077

ABSTRACT

AIM: Soluble suppression of tumorigenicity-2 (sST2) is a strong prognostic biomarker in heart failure. The emerging understanding of circadian biology in cardiovascular disease may lead to novel applications in prognosis and diagnosis and may provide insight into mechanistic aspects of the disease-biomarker interaction. So far, it is unknown whether sST2 exhibits a diurnal rhythm. Repeated measurements of sST2 may aid in clinical decision making. The goal of this study was to investigate whether sST2 exhibits diurnal variation in patients with heart failure with reduced ejection fraction (HFrEF) and in control subjects, thereby enhancing its diagnostic and prognostic values. METHODS AND RESULTS: The study comprised 32 subjects: 16 HFrEF patients and 16 controls. Blood was collected at seven subsequent time points during a 24 h time period. sST2, N-terminal pro-B-type natriuretic peptide (NT-proBNP), melatonin, and cortisol were measured from serum. Peak values of sST2 clustered at daytime (modal value: 5 p.m.) in 87.6% of all subjects (81.3% of patients, P = 0.021; 93.8% of controls, P = 0.001), and minimum concentrations at night-time (modal value: 5 a.m.) in 84.4% (87.5% of patients, P = 0.004 81.3% of controls, P = 0.021). A cosinor analysis of mean normalized sST2 values revealed significant cosine shaped 24 h oscillations of patients (P = 0.026) and controls (P = 0.037). NT-proBNP in contrast did not show a diurnal rhythm, while melatonin and cortisol patterns were intact in all subjects. CONCLUSIONS: sST2 exhibits a diurnal rhythm with lower values in the morning than in the late afternoon. This new insight could lead to refinement of its diagnostic and prognostic values through specified and consistent sampling times with repeated measurements. For example, by measuring sST2 during the afternoon, when levels are at their highest, false negatives on prognosis prediction could be avoided.


Subject(s)
Heart Failure , Biomarkers , Circadian Rhythm , Heart Failure/diagnosis , Humans , Prognosis , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL