ABSTRACT
Wildlife species may shift towards more nocturnal behavior in areas of higher human influence, but it is unclear how consistent this shift might be. We investigated how humans impact large mammal diel activities in a heavily recreated protected area and an adjacent university-managed forest in southwest British Columbia, Canada. We used camera trap detections of humans and wildlife, along with data on land-use infrastructure (e.g., recreation trails and restricted-access roads), in Bayesian regression models to investigate impacts of human disturbance on wildlife nocturnality. We found moderate evidence that black bears (Ursus americanus) were more nocturnal in response to human detections (mean posterior estimate = 0.35, 90% credible interval = 0.04 to 0.65), but no other clear relationships between wildlife nocturnality and human detections. However, we found evidence that coyotes (Canis latrans) (estimates = 0.81, 95% CI = 0.46 to 1.17) were more nocturnal and snowshoe hares (Lepus americanus) (estimate = -0.87, 95% CI = -1.29 to -0.46) were less nocturnal in areas of higher trail density. We also found that coyotes (estimate = -0.87, 95% CI = -1.29 to -0.46) and cougars (Puma concolor) (estimate = -1.14, 90% CI = -2.16 to -0.12) were less nocturnal in areas of greater road density. Furthermore, coyotes, black-tailed deer (Odocoileus hemionus), and snowshoe hares were moderately more nocturnal in areas near urban-wildland boundaries (estimates and 90% CIs: coyote = -0.29, -0.55 to -0.04, black-tailed deer = -0.25, -0.45 to -0.04, snowshoe hare = -0.24, -0.46 to -0.01). Our findings imply anthropogenic landscape features may influence medium to large-sized mammal diel activities more than direct human presence. While increased nocturnality may be a promising mechanism for human-wildlife coexistence, shifts in temporal activity can also have negative repercussions for wildlife, warranting further research into the causes and consequences of wildlife responses to increasingly human-dominated landscapes.
Subject(s)
Coyotes , Deer , Hares , Animals , Humans , Animals, Wild/physiology , Coyotes/physiology , Bayes Theorem , British Columbia , EcosystemABSTRACT
Outdoor recreation is widespread, with uncertain effects on wildlife. The human shield hypothesis (HSH) suggests that recreation could have differential effects on predators and prey, with predator avoidance of humans creating a spatial refuge 'shielding' prey from people. The generality of the HSH remains to be tested across larger scales, wherein human shielding may prove generalizable, or diminish with variability in ecological contexts. We combined data from 446 camera traps and 79,279 sampling days across 10 landscapes spanning 15,840 km2 in western Canada. We used hierarchical models to quantify the influence of recreation and landscape disturbance (roads, logging) on ungulate prey (moose, mule deer and elk) and carnivore (wolf, grizzly bear, cougar and black bear) site use. We found limited support for the HSH and strong responses to recreation at local but not larger spatial scales. Only mule deer showed positive but weak landscape-level responses to recreation. Elk were positively associated with local recreation while moose and mule deer responses were negative, contrary to HSH predictions. Mule deer showed a more complex interaction between recreation and land-use disturbance, with more negative responses to recreation at lower road density or higher logged areas. Contrary to HSH predictions, carnivores did not avoid recreation and grizzly bear site use was positively associated. We also tested the effects of roads and logging on temporal activity overlap between mule deer and recreation, expecting deer to minimize interaction with humans by partitioning time in areas subject to more habitat disturbance. However, temporal overlap between people and deer increased with road density. Our findings highlight the complex ecological patterns that emerge at macroecological scales. There is a need for expanded monitoring of human and wildlife use of recreation areas, particularly multi-scale and -species approaches to studying the interacting effects of recreation and land-use change on wildlife.
ABSTRACT
The dual mandate for many protected areas (PAs) to simultaneously promote recreation and conserve biodiversity may be hampered by negative effects of recreation on wildlife. However, reports of these effects are not consistent, presenting a knowledge gap that hinders evidence-based decision-making. We used camera traps to monitor human activity and terrestrial mammals in Golden Ears Provincial Park and the adjacent University of British Columbia Malcolm Knapp Research Forest near Vancouver, Canada, with the objective of discerning relative effects of various forms of recreation on cougars (Puma concolor), black bears (Ursus americanus), black-tailed deer (Odocoileus hemionus), snowshoe hares (Lepus americanus), coyotes (Canis latrans), and bobcats (Lynx rufus). Additionally, public closures of the study area associated with the COVD-19 pandemic offered an unprecedented period of human-exclusion through which to explore these effects. Using Bayesian generalized mixed-effects models, we detected negative effects of hikers (mean posterior estimate = -0.58, 95% credible interval [CI] -1.09 to -0.12) on weekly bobcat habitat use and negative effects of motorized vehicles (estimate = -0.28, 95% CI -0.61 to -0.05) on weekly black bear habitat use. We also found increased cougar detection rates in the PA during the COVID-19 closure (estimate = 0.007, 95% CI 0.005 to 0.009), but decreased cougar detection rates (estimate = -0.006, 95% CI -0.009 to -0.003) and increased black-tailed deer detection rates (estimate = 0.014, 95% CI 0.002 to 0.026) upon reopening of the PA. Our results emphasize that effects of human activity on wildlife habitat use and movement may be species- and/or activity-dependent, and that camera traps can be an invaluable tool for monitoring both wildlife and human activity, collecting data even when public access is barred. Further, we encourage PA managers seeking to promote both biodiversity conservation and recreation to explicitly assess trade-offs between these two goals in their PAs.
ABSTRACT
Human disturbance directly affects animal populations and communities, but indirect effects of disturbance on species behaviors are less well understood. For instance, disturbance may alter predator activity and cause knock-on effects to predator-sensitive foraging in prey. Camera traps provide an emerging opportunity to investigate such disturbance-mediated impacts to animal behaviors across multiple scales. We used camera trap data to test predictions about predator-sensitive behavior in three ungulate species (caribou Rangifer tarandus; white-tailed deer, Odocoileus virginianus; moose, Alces alces) across two western boreal forest landscapes varying in disturbance. We quantified behavior as the number of camera trap photos per detection event and tested its relationship to inferred human-mediated predation risk between a landscape with greater industrial disturbance and predator activity and a "control" landscape with lower human and predator activity. We also assessed the finer-scale influence on behavior of variation in predation risk (relative to habitat variation) across camera sites within the more disturbed landscape. We predicted that animals in areas with greater predation risk (e.g., more wolf activity, less cover) would travel faster past cameras and generate fewer photos per detection event, while animals in areas with less predation risk would linger (rest, forage, investigate), generating more photos per event. Our predictions were supported at the landscape-level, as caribou and moose had more photos per event in the control landscape where disturbance-mediated predation risk was lower. At a finer-scale within the disturbed landscape, no prey species showed a significant behavioral response to wolf activity, but the number of photos per event decreased for white-tailed deer with increasing line of sight (m) along seismic lines (i.e., decreasing visual cover), consistent with a predator-sensitive response. The presence of juveniles was associated with shorter behavioral events for caribou and moose, suggesting greater predator sensitivity for females with calves. Only moose demonstrated a positive behavioral association (i.e., longer events) with vegetation productivity (16-day NDVI), suggesting that for other species bottom-up influences of forage availability were generally weaker than top-down influences from predation risk. Behavioral insights can be gleaned from camera trap surveys and provide complementary information about animal responses to predation risk, and thus about the indirect impacts of human disturbances on predator-prey interactions.