ABSTRACT
INTRODUCTION: Targeted therapy in non-small cell lung cancer (NSCLC) patients with mesenchymal epithelial transition (MET) exon 14 skipping mutations (METex14) and MET amplifications has improved patients' outcomes. The development of more potent MET kinase inhibitors could further benefit these patients. The aim of this trial is to determine the safety and recommended phase 2 dose (RP2D) of OMO-1 (an oral dual MET kinase/OCT-2 inhibitor) and to assess preliminary clinical efficacy in METex14-positive NSCLC and other MET-positive solid tumors. MATERIALS AND METHODS: This was a first-in-patient, open-label, multicenter study of OMO-1 in patients with locally advanced or metastatic solid malignancies. A standard 3 + 3 dose escalation design was utilized starting at a dose level of 100 mg BID continuously. Preliminary efficacy was investigated in patients with METex14-positive NSCLC, and MET amplified NSCLC and other solid tumors (MET basket). RESULTS: In the dose-escalation part, 24 patients were included in 5 dose levels ranging from 100 mg twice daily (BID) to 400 mg BID. Most common adverse events (≥ 20%) were nausea, fatigue, vomiting, increased blood creatinine, and headache. The RP2D was determined at 250 mg BID. In the expansion cohorts, 15 patients were included (10 in METex14-positive NSCLC cohort and 5 in MET basket cohort) and received either 200 or 250 mg BID. Eight out of the 10 patients with METex14 positive NSCLC had stable disease as the best response. CONCLUSION: OMO-1 was tolerated at the dose of 250 mg BID and shows initial signs of MET inhibition and anti-tumor activity in METex14 mutated NSCLC patients.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Neoplasms, Second Primary , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins c-met/genetics , Protein Kinase Inhibitors/adverse effects , Neoplasms, Second Primary/genetics , Exons , MutationABSTRACT
In this phase 1 open-label study, we assessed the relative bioavailability of a prototype tablet formulation of TAK-931, a cell division cycle 7 kinase inhibitor, in reference to the current powder-in-capsule (PIC) formulation in patients with advanced solid tumors for whom no effective standard treatment was available. Adult patients were randomized 1:1 in a crossover fashion to receive one dose of TAK-931 80 mg PIC on Day 1 and one dose of TAK-931 80 mg tablet on Day 3 (or the reverse sequence), followed by TAK-931 50 mg PIC once daily (QD) for 12 days starting from Day 5, before a 7-day rest period (Cycle 0). From Cycle 1, all patients received 50 mg PIC QD on Days 1-14 followed by a 7-day rest period. Twenty patients were enrolled. Median Tmax was achieved approximately 2 h post-dose of TAK-931 80 mg for both tablet and PIC. Geometric mean Cmax, AUC exposures, and T1/2z of TAK-931 were similar for both formulations. Geometric mean Cmax, AUClast, and AUCinf ratios were 0.936 (90% confidence interval [CI]: 0.808-1.084), 1.004 (90% CI: 0.899-1.120), and 1.007 (90% CI: 0.903-1.123), respectively, for TAK-931 tablet in reference to PIC. Discontinuation of TAK-931 due to treatment-emergent adverse events (TEAEs) occurred in 1 patient. Four (20%) patients experienced a serious TEAE; none were considered related to TAK-931. Pharmacokinetics and systemic exposure profiles were similar following administration of both formulations, supporting the transition from PIC to tablet in the clinical development of TAK-931. (Trial registration number ClinicalTrials.gov NCT03708211. Registration date October 12, 2018).
Subject(s)
Neoplasms , Adult , Humans , Biological Availability , Powders/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Tablets/therapeutic use , Cross-Over Studies , Area Under Curve , Administration, Oral , Therapeutic EquivalencyABSTRACT
BACKGROUND: Biomarker-guided therapy in an experimental setting has been suggested to improve patient outcomes. However, trial-specific pre-screening tests are time and tissue consuming and complicate the personalised treatment of patients eligible for early-phase clinical trials. In this study the feasibility of whole-genome sequencing (WGS) as a one-test-for-all for guided inclusion in early-phase trials was investigated. METHODS: Phase I Molecular Tumor Board (MTB) at the Erasmus MC Cancer Institute reviewed patients with advanced cancer without standard-of-care treatment (SOC) options for a 'fresh-frozen' (FF) tumour biopsy for WGS based on clinical-pathological features. Clinical grade WGS was performed by Hartwig Medical Foundation. MTB matched the patient with a trial, if available. RESULTS: From September 2019-March 2021, 31 patients with highly diverse tumour types underwent a tumour biopsy for WGS. The median turnaround time (TAT) was 15 days [10-42 days]. At least one actionable event was found in 84% of the patients (26/31). One-third of the patients (11/31) received matched experimental treatment. CONCLUSIONS: WGS on fresh FF biopsies is a feasible tool for the selection of personalised experimental therapy in patients with advanced cancer without SOC options. WGS is now possible in an acceptable TAT and thus could fulfil the role of a universal genomic pre-screening test.
Subject(s)
Neoplasms , Genomics , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Therapies, Investigational , Whole Genome SequencingABSTRACT
This case concerns a 56-year-old female without medical history, who presents with a purple-red discoloration of the nose without clinical signs of sepsis. The patient rapidly deteriorates into multi-organ failure based on a pneumococcal sepsis with purpura fulminans.
Subject(s)
Pneumococcal Infections , Sepsis , Female , Humans , Middle Aged , Erythema , Multiple Organ Failure , NoseABSTRACT
Background: Anaplastic lymphoma kinase (ALK) translocations in metastatic non-small cell lung cancer (3% to 7%) predict for response to ALK-inhibitors (eg, alectinib, first line), resulting in a 5-year survival rate of â¼60% and median progression-free survival of 34.8 months. Although the overall toxicity rate of alectinib is acceptable, unexplained adverse events, including edema and bradycardia, may indicate potential cardiac toxicity. Objectives: This study's aim was to investigate the cardiotoxicity profile and exposure-toxicity relationship of alectinib. Methods: Between April 2020 and September 2021, 53 patients with ALK-positive non-small cell lung cancer treated with alectinib were included. Patients starting with alectinib after April 2020 underwent a cardiac work-up at start, at 6 months and at 1 year at the cardio-oncology outpatients' clinic. Patients already receiving alectinib >6 months underwent 1 cardiac evaluation. Bradycardia, edema, and severe alectinib toxicity (grade ≥3 and grade ≥2 adverse events leading to dose modifications) data were collected. Alectinib steady-state trough concentrations were used for exposure-toxicity analyses. Results: Left ventricular ejection fraction remained stable in all patients who underwent an on-treatment cardiac evaluation (n = 34; median 62%; IQR: 58%-64%). Twenty-two patients (42%) developed alectinib-related bradycardia (6 symptomatic bradycardia). One patient underwent a pacemaker implantation for severe symptomatic bradycardia. Severe toxicity was significantly associated with a 35% higher alectinib mean Ctrough (728 vs 539 ng/mL, SD = 83 ng/mL; 1-sided P = 0.015). Conclusions: No patients showed signs of a diminished left ventricular ejection fraction. Alectinib caused more bradycardia than previously reported (42%) with some instances of severe symptomatic bradycardia. Patients with severe toxicity generally had an elevated exposure above the therapeutic threshold.
ABSTRACT
INTRODUCTION: Alectinib is a standard-of-care treatment for metastatic ALK+ NSCLC. Weight gain is an unexplored side effect reported in approximately 10%. To prevent or intervene alectinib-induced weight gain, more insight in its extent and etiology is needed. METHODS: Change in body composition was analyzed in a prospective series of 46 patients with ALK+ NSCLC, treated with alectinib. Waist circumference, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and skeletal muscle were quantified using sliceOmatic software on computed tomography images at baseline, 3 months (3M), and 1 year (1Y). To investigate an exposure-toxicity relationship, alectinib plasma concentrations were quantified. Four patients with more than 10 kg weight gain were referred to Erasmus MC Obesity Center CGG for in-depth analysis (e.g., assessments of appetite, dietary habits, other lifestyle, medical and psychosocial factors, and extensive metabolic and endocrine assessments, including resting energy expenditure). RESULTS: Mean increase in waist circumference was 9 cm (9.7%, p < 0.001) in 1Y with a 40% increase in abdominal obesity (p = 0.014). VAT increased to 10.8 cm2 (15.0%, p = 0.003) in 3M and 35.7 cm2 (39.0%, p < 0.001) in 1Y. SAT increased to 18.8 cm2 (12.4%, p < 0.001) in 3M and 45.4 cm2 (33.3%, p < 0.001) in 1Y. The incidence of sarcopenic obesity increased from 23.7% to 47.4% during 1Y of treatment. Baseline waist circumference was a positive predictor of increase in VAT (p = 0.037). No exposure-toxicity relationship was found. In-depth analysis (n = 4) revealed increased appetite in two patients and metabolic syndrome in all four patients. CONCLUSIONS: Alectinib may cause relevant increased sarcopenic abdominal obesity, with increases of both VAT and SAT, quickly after initiation. This may lead to many serious metabolic, physical, and mental disturbances in long-surviving patients.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Sarcopenia , Humans , Lung Neoplasms/pathology , Obesity, Abdominal/chemically induced , Obesity, Abdominal/drug therapy , Carcinoma, Non-Small-Cell Lung/secondary , Carbazoles/adverse effects , Obesity , Weight Gain , Anaplastic Lymphoma KinaseABSTRACT
PURPOSE: Pemetrexed is a chemotherapeutic drug in the treatment of non-small cell lung cancer and mesothelioma. Optimized dosing of pemetrexed based on renal function instead of body surface area (BSA) is hypothesized to reduce pharmacokinetic variability in systemic exposure and could therefore improve treatment outcomes. The aim of this study is to compare optimized dosing to standard BSA-based dosing. METHODS: A multicenter randomized (1:1) controlled trial was performed to assess superiority of optimized dosing versus BSA-based dosing in patients who were eligible for pemetrexed-based chemotherapy. The individual exposure to pemetrexed in terms of area under the concentration-time curve (AUC) was determined. The fraction of patients attaining to a predefined typical target AUC (164 mg × h/L ± 25%) was calculated. RESULTS: A total of 81 patients were included. Target attainment was not statistically significant different between both arms (89% vs. 84% (p = 0.505)). The AUC of pemetrexed was similar between the optimized dosing arm (n = 37) and the standard of care arm (n = 44) (155 mg × h/L vs 160 mg × h/L (p = 0.436). CONCLUSION: We could not show superiority of optimized dosing of pemetrexed in patients with an adequate renal function does not show added value on the attainment of a pharmacokinetic endpoint, safety, nor QoL compared to standard of care dosing. CLINICAL TRIAL NUMBER: Clinicaltrials.gov identifier: NCT03655821.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Pemetrexed , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Quality of Life , Kidney/metabolism , Antineoplastic Combined Chemotherapy ProtocolsABSTRACT
Although epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) are the preferred treatment for patients with EGFR-mutated non-small cell lung cancer (NSCLC), not all patients benefit. We therefore explored the impact of the presence of mutations found in cell-free DNA (cfDNA) and TKI plasma concentrations during treatment on progression-free survival (PFS). In the prospective START-TKI study blood samples from 41 patients with EGFR-mutated NSCLC treated with EGFR-TKIs were available. Next generation sequencing (NGS) on cfDNA was performed, and plasma TKI concentrations were measured. Patients without complete plasma conversion of EGFR mutation at week 6 had a significantly shorter PFS (5.5 vs. 17.0 months, p = 0.002) and OS (14.0 vs. 25.5 months, p = 0.003) compared to patients with plasma conversion. In thirteen (second line) osimertinib-treated patients with a (plasma or tissue) concomitant TP53 mutation at baseline, PFS was significantly shorter compared to six wild-type cases; 8.8 vs. 18.8 months, p = 0.017. Erlotinib Cmean decrease of ≥10% in the second tertile of treatment was also associated with a significantly shorter PFS; 8.9 vs. 23.6 months, p = 0.037. We obtained evidence that absence of plasma loss of the primary EGFR mutation, isolated plasma p.T790M loss after six weeks, baseline concomitant TP53 mutations, and erlotinib Cmean decrease during treatment are probably related to worse outcome.