Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Postepy Biochem ; 68(3): 321-335, 2022 09 30.
Article in Polish | MEDLINE | ID: mdl-36317988

ABSTRACT

Conception of a child at advanced parental age (> 35 years) has been steadily increasing in recent decades, especially in developed countries. Socio-economic factors, effective contraceptives, and the availability of Assisted Reproduction Technologies (ART) have a direct impact on postponing the decision to have a baby. ART enables reproductive success for people diagnosed as infertile or with reduced possibilities of becoming pregnant due to concomitant pathologies. Epidemiological studies indicate that both advanced parental age and ART are associated with pathologies of pregnancy, such as gestational diabetes, risk of pre-eclampsia, miscarriage, placental abruption, preterm labor, stillbirth, neurodevelopmental disorders and chronic disease of the offspring. In our work, we will focus on the available information on metabolic changes that increase the risk of developing cardiovascular diseases in the offspring of parents at an advanced age and conceived through ART. Finally, we will address the sources of the observed disturbances at the gamete and embryo level, related to oxygen stress, epigenetic modifications and DNA damage, considering possible rescue actions.


Subject(s)
Premature Birth , Infant, Newborn , Child , Pregnancy , Female , Humans , Adult , Placenta , Chronic Disease , Parents , Aging , Reproduction
2.
Biol Reprod ; 104(4): 734-744, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33330924

ABSTRACT

The increasing prevalence of metabolic diseases places a substantial burden on human health throughout the world. It is believed that predisposition to metabolic disease starts early in life, a period of great susceptibility to epigenetic reprogramming due to environmental insults. Assisted reproductive technologies (ART), i.e., treatments for infertility, may affect embryo development, resulting in multiple adverse health outcomes in postnatal life. The most frequently observed alteration in ART pregnancies is impaired placental nutrient transfer. Moreover, consequent intrauterine growth restriction and low birth weight followed by catch-up growth can all predict future obesity, insulin resistance, and chronic metabolic diseases. In this review, we have focused on evidence of adverse metabolic alterations associated with ART, which can contribute to the development of chronic adult-onset diseases, such as metabolic syndrome, type 2 diabetes, and cardiovascular disease. Due to high phenotypic plasticity, ART pregnancies can produce both offspring with adverse health outcomes, as well as healthy individuals. We further discuss the sex-specific and age-dependent metabolic alterations reflected in ART offspring, and how the degree of interference of a given ART procedure (from mild to more severe manipulation of the egg) affects the occurrence and degree of offspring alterations. Over the last few years, studies have reported signs of cardiometabolic alterations in ART offspring that are detectable at a young age but that do not appear to constitute a high risk of disease and morbidity per se. These abnormal phenotypes could be early indicators of the development of chronic diseases, including metabolic syndrome, in adulthood. The early detection of metabolic alterations could contribute to preventing the onset of disease in adulthood. Such early interventions may counteract the risk factors and improve the long-term health of the individual.


Subject(s)
Energy Metabolism/physiology , Metabolic Diseases/etiology , Reproductive Techniques, Assisted , Adult , Animals , Female , Humans , Infertility/epidemiology , Infertility/metabolism , Infertility/therapy , Male , Metabolic Diseases/epidemiology , Pregnancy , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/metabolism , Reproductive Techniques, Assisted/adverse effects , Reproductive Techniques, Assisted/statistics & numerical data , Risk Factors
3.
Hum Reprod ; 28(2): 298-305, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23169866

ABSTRACT

STUDY QUESTION: Is DNA methyltransferase 1 (DNMT1) dysfunction involved in epigenetic deregulation of placentae from embryos obtained by assisted reproduction technologies (ARTs)? SUMMARY ANSWER: DNMT1 expression in growing placentae of in vitro produced (IVP) embryos is compromised and associated with pregnancy loss. WHAT IS KNOWN ALREADY: DNMT1 maintains the methylation profile of genes during cell division. The methylation status of genes involved in placenta development is altered in embryos obtained in vitro. Disturbances in the epigenetic regulation of gene expression during placentogenesis could be involved in the frequent developmental arrest and loss of IVP embryos. STUDY DESIGN, SIZE, DURATION: Forty sheep were naturally mated (Group 1, CTR). IVP blastocysts (2-4 per ewe) were surgically transferred to the remaining 46 recipient sheep 6 days after oestrus (Group 2). Twenty-one recipients from Group 1 and 27 recipients from Group 2 were allowed to deliver in order to compare embryo survival in both groups at term (150 days). From the remaining recipients (n = 38), fetuses and placentae of both groups were recovered by paramedian laparotomy at Days 20, 22, 24, 26 and 28 of gestation. MATERIALS, SETTING, METHODS: Immediately after collection, early placental tissues (chorion-allantois) were snap frozen in liquid nitrogen and DNMT1 expression and activity was evaluated. mRNA levels (for DNMT1, HDAC2, PCNA, DMAP1, MEST, IGF2, CDKN1C, H19) and the methylation status of H19 were also analyzed. Furthermore, embryo size and survival rate were measured. MAIN RESULTS AND THE ROLE OF CHANCE: Our study shows that DNMT1 expression was reduced in early placentae from sheep IVP embryos. This reduction was associated with growth arrest and subsequent death of the sheep embryos. Conversely, normal levels of DNMT1 and its cofactors were observed in placentae from IVP embryos that survived this developmental bottleneck. Although DNA methylation machinery was severely compromised in IVP placentae only up to Day 24, the low DNMT1 enzymatic activity that persisted after this stage in IVP placentae was not lethal for the developing embryos. LIMITATIONS, REASONS FOR CAUTION: The studied genes represent only a small fraction of genes regulating DNA methylation. Further studies are needed to evaluate changes in the expression and methylation status of other genes that may lead to developmental arrest of IVP embryos. As this is the only study evaluating the functionality of DNMT1 machinery in placentae from ART embryos, studies on other species are needed to confirm if our observation may be applicable to all mammalian embryos produced in vitro. WIDER IMPLICATIONS OF THE FINDINGS: The knowledge about compromised activity of DNMT1 in placentae obtained from IVP embryos should stimulate detailed studies on the metabolic requirements of oocytes and embryos in order to adequately enrich the culture media.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/physiology , Embryo, Mammalian/enzymology , Placenta/enzymology , Sheep, Domestic/embryology , Animals , Down-Regulation , Embryonic Development/genetics , Female , Fertilization in Vitro , Gene Expression Regulation, Developmental , Pregnancy , Sheep, Domestic/genetics , Sheep, Domestic/metabolism
4.
Hum Reprod Update ; 28(3): 376-399, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35021196

ABSTRACT

BACKGROUND: DNA damage is a hazard that affects all cells of the body. DNA-damage repair (DDR) mechanisms are in place to repair damage and restore cellular function, as are other damage-induced processes such as apoptosis, autophagy and senescence. The resilience of germ cells and embryos in response to DNA damage is less well studied compared with other cell types. Given that recent studies have described links between embryonic handling techniques and an increased likelihood of disease in post-natal life, an update is needed to summarize the sources of DNA damage in embryos and their capacity to repair it. In addition, numerous recent publications have detailed novel techniques for detecting and repairing DNA damage in embryos. This information is of interest to medical or scientific personnel who wish to obtain undamaged embryos for use in offspring generation by ART. OBJECTIVE AND RATIONALE: This review aims to thoroughly discuss sources of DNA damage in male and female gametes and preimplantation embryos. Special consideration is given to current knowledge and limits in DNA damage detection and screening strategies. Finally, obstacles and future perspectives in clinical diagnosis and treatment (repair) of DNA damaged embryos are discussed. SEARCH METHODS: Using PubMed and Google Scholar until May 2021, a comprehensive search for peer-reviewed original English-language articles was carried out using keywords relevant to the topic with no limits placed on time. Keywords included 'DNA damage repair', 'gametes', 'sperm', 'oocyte', 'zygote', 'blastocyst' and 'embryo'. References from retrieved articles were also used to obtain additional articles. Literature on the sources and consequences of DNA damage on germ cells and embryos was also searched. Additional papers cited by primary references were included. Results from our own studies were included where relevant. OUTCOMES: DNA damage in gametes and embryos can differ greatly based on the source and severity. This damage affects the development of the embryo and can lead to long-term health effects on offspring. DDR mechanisms can repair damage to a certain extent, but the factors that play a role in this process are numerous and altogether not well characterized. In this review, we describe the multifactorial origin of DNA damage in male and female gametes and in the embryo, and suggest screening strategies for the selection of healthy gametes and embryos. Furthermore, possible therapeutic solutions to decrease the frequency of DNA damaged gametes and embryos and eventually to repair DNA and increase mitochondrial quality in embryos before their implantation is discussed. WIDER IMPLICATIONS: Understanding DNA damage in gametes and embryos is essential for the improvement of techniques that could enhance embryo implantation and pregnancy success. While our knowledge about DNA damage factors and regulatory mechanisms in cells has advanced greatly, the number of feasible practical techniques to avoid or repair damaged embryos remains scarce. Our intention is therefore to focus on strategies to obtain embryos with as little DNA damage as possible, which will impact reproductive biology research with particular significance for reproductive clinicians and embryologists.


Subject(s)
Blastocyst , Germ Cells , Blastocyst/physiology , DNA , DNA Damage , Female , Humans , Male , Oocytes/physiology , Pregnancy
5.
Cells ; 11(4)2022 02 19.
Article in English | MEDLINE | ID: mdl-35203380

ABSTRACT

A growing number of sperm methylome analyses have identified genomic loci that are susceptible to paternal age effects in a variety of mammalian species, including human, bovine, and mouse. However, there is little overlap between different data sets. Here, we studied whether or not paternal age effects on the sperm epigenome have been conserved in mammalian evolution and compared methylation patterns of orthologous regulatory regions (mainly gene promoters) containing both conserved and non-conserved CpG sites in 94 human, 36 bovine, and 94 mouse sperm samples, using bisulfite pyrosequencing. We discovered three (NFKB2, RASGEF1C, and RPL6) age-related differentially methylated regions (ageDMRs) in humans, four (CHD7, HDAC11, PAK1, and PTK2B) in bovines, and three (Def6, Nrxn2, and Tbx19) in mice. Remarkably, the identified sperm ageDMRs were all species-specific. Most ageDMRs were in genomic regions with medium methylation levels and large methylation variation. Orthologous regions in species not showing this age effect were either hypermethylated (>80%) or hypomethylated (<20%). In humans and mice, ageDMRs lost methylation, whereas bovine ageDMRs gained methylation with age. Our results are in line with the hypothesis that sperm ageDMRs are in regions under epigenomic evolution and may be part of an epigenetic mechanism(s) for lineage-specific environmental adaptations and provide a solid basis for studies on downstream effects in the genes analyzed here.


Subject(s)
DNA Methylation , Paternal Age , Spermatozoa , Animals , Cattle , DNA Methylation/genetics , Epigenesis, Genetic , Epigenome , Male , Mice , Spermatozoa/metabolism
6.
Theriogenology ; 171: 119-129, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34052779

ABSTRACT

Assisted Reproductive Technologies (ART) allowed the births of >8 million babies worldwide. Even if ART children are healthy at birth, several studies reported that ART may cause changes in foetal programming, leading to an increased predisposition to metabolic disorders in adulthood. Previous studies on mouse model showed obesity, glucose intolerance, and hepatic lipid accumulation in ART offspring. A cumulative effect of the different components of ART protocol has been previously described, for example, in the occurrence of epigenetic defects. Here, we investigated whether there is a cumulative effect of embryo transfer (ET), in vitro culture (IVC) and blastomere biopsy (BB) in the onset of metabolic disorders in mouse offspring vs those naturally conceived (Control - CTR). To this aim, proteomic analysis was performed on the livers from adult mouse offspring developed following ET, IVC and BB vs CTR. We observed deregulated expression of proteins involved in lipid, carbohydrate, energy metabolisms and cellular processes in ART offspring. Moreover, we found increased body weight in all ART offspring while i) insulin resistance in BB male, ii) females glucose intolerance and high level of triglycerides and cholesterol in BB females and iii) low levels of interleukin-6 in BB, IVC and ET males. In conclusion, our study suggests that the use of various embryo manipulations influences the metabolic health of adult offspring, resulting in an increased predisposition to hepatic diseases and metabolic syndrome in a sex-specific manner.


Subject(s)
Metabolic Diseases , Rodent Diseases , Animals , Liver , Male , Metabolic Diseases/etiology , Metabolic Diseases/veterinary , Mice , Proteome , Proteomics , Reproductive Techniques, Assisted/veterinary
7.
Aging Cell ; 19(8): e13181, 2020 08.
Article in English | MEDLINE | ID: mdl-32608562

ABSTRACT

In somatic cells/tissues, methylation of ribosomal DNA (rDNA) increases with age and age-related pathologies, which has a direct impact on the regulation of nucleolar activity and cellular metabolism. Here, we used bisulfite pyrosequencing and show that methylation of the rDNA transcription unit including upstream control element (UCE), core promoter, 18S rDNA, and 28S rDNA in human sperm also significantly increases with donor's age. This positive correlation between sperm rDNA methylation and biological age is evolutionarily conserved among mammals with widely different life spans such as humans, marmoset, bovine, and mouse. Similar to the tandemly repeated rDNA, methylation of human α-satellite and interspersed LINE1 repeats, marmoset α-satellite, bovine alpha- and testis satellite I, mouse minor and major satellite, and LINE1-T repeats increases in the aging male germline, probably related to their sperm histone packaging. Deep bisulfite sequencing of single rDNA molecules in human sperm revealed that methylation does not only depend on donor's age, but also depend on the region and sequence context (A vs. G alleles). Both average rDNA methylation of all analyzed DNA molecules and the number of fully (>50%) methylated alleles, which are thought to be epigenetically silenced, increase with donor's age. All analyzed CpGs in the sperm rDNA transcription unit show comparable age-related methylation changes. Unlike other epigenetic aging markers, the rDNA clock appears to operate in similar ways in germline and soma in different mammalian species. We propose that sperm rDNA methylation, directly or indirectly, influences nucleolar formation and developmental potential in the early embryo.


Subject(s)
DNA Methylation , DNA, Ribosomal/genetics , Spermatozoa/metabolism , Animals , DNA, Ribosomal/metabolism , Germ Cells , Humans , Male , Mammals
8.
Theriogenology ; 93: 55-61, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-28257867

ABSTRACT

Pregnancies obtained by Assisted Reproductive Technologies are at higher risk of miscarriage than those obtained naturally. Previously, we reported impaired placental vascular development of in vitro produced (IVP) sheep embryos and defective DNA methylation in the placentae of those embryos. One reason behind these observed defects may be an impaired One Carbon Metabolism (OCM) The present study was performed to test the hypothesis that Cobalamin (Vitamin B12, an important OCM co-factor) supplementation during IVM corrects DNA methylation of IVP embryos and, consequently, ameliorates placental vasculogenesis. To this aim, embryos derived from oocytes matured with Cobalamin (B12 group) or without (negative control group, -CTR) were transferred to synchronized recipient sheep. At day 20 of pregnancy, collected embryos were morphologically evaluated while placentae were subjected to qPCR and histological analysis. The positive control group (+CTR) consisted of conceptuses obtained from naturally mated sheep. Results showed an increased fertilization rate in the B12 group vs -CTR (69.56% vs 57.91% respectively, P = 0.006) not associated with quantitative improvement in blastocyst and/or implantation rate (44.32% vs 36.67% respectively, P > 0.05). Moreover, Cobalamin supplementation during oocyte IVM ameliorated resulting conceptuses quality, in terms of placental vascularization (vessels' maturity and vasculogenetic factors' expression). The expression of DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) was also improved in placentae from the B12 group. In conclusion, Cobalamin supplementation during oocyte IVM improves IVP embryo quality. These results suggest that Cobalamin should be included in standard IVM media.


Subject(s)
In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/growth & development , Sheep , Vitamin B 12/administration & dosage , Animals , DNA Methylation/drug effects , DNA Modification Methylases/genetics , Embryo Transfer/veterinary , Embryo, Mammalian/physiology , Embryonic Development/drug effects , Female , Fertilization in Vitro/veterinary , Gene Expression , In Vitro Oocyte Maturation Techniques/methods , Oocytes/drug effects , Placenta/blood supply , Placenta/physiology , Pregnancy , Sheep/embryology
9.
PLoS One ; 12(1): e0169579, 2017.
Article in English | MEDLINE | ID: mdl-28076382

ABSTRACT

In various animal species, the main cause of pregnancy loss in conceptuses obtained by somatic cell nuclear transfer (SCNT) are placental abnormalities. Most abnormalities described in SCNT pregnancies (such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium) suggest that placental cell degeneration may be triggered by mitochondrial failure. We hypothesized that placental abnormalities of clones obtained by SCNT are related to mitochondrial dysfunction. To test this, early SCNT and control (CTR, from pregnancies obtained by in vitro fertilization) placentae were collected from pregnant ewes (at day 20 and 22 of gestation) and subjected to morphological, mRNA and protein analysis. Here, we demonstrated swollen and fragmented mitochondria and low expression of mitofusin 2 (Mfn2), the protein which plays a crucial role in mitochondrial functionality, in SCNT early placentae. Furthermore, reduced expression of the Bcnl3L/Nix protein, which plays a crucial role in selective elimination of damaged mitochondria, was observed and reflected by the accumulation of numerous damaged mitochondria in SCNT placental cells. Likely, this accumulation of damaged organelles led to uncontrolled apoptosis in SCNT placentae, as demonstrated by the high number of apoptotic bodies, fragmented cytoplasm, condensed chromatin, lack of integrity of the nuclear membrane and the perturbed mRNA expression of apoptotic genes (BCL2 and BAX). In conclusion, our data indicate that deregulated expression of Mfn2 and Bcnl3L is responsible for placental abnormalities in SCNT conceptuses. Our results suggest that some nuclear genes, that are involved in the regulation of mitochondrial function, do not work well and consequently this influence the function of mitochondria.


Subject(s)
GTP Phosphohydrolases/genetics , Mitochondrial Proteins/metabolism , Nuclear Transfer Techniques/adverse effects , Placenta/metabolism , Proto-Oncogene Proteins/genetics , Animals , Apoptosis , Female , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/genetics , Placenta/pathology , Pregnancy , Proto-Oncogene Proteins/metabolism , Sheep
10.
PLoS One ; 12(11): e0188278, 2017.
Article in English | MEDLINE | ID: mdl-29190766

ABSTRACT

Genomic imprinting is an epigenetic phenomenon regulating mono-allelic expression of genes depending on their parental origin. Defective genomic imprinting is involved in several placental disorders, such as intrauterine growth restriction and pre-eclampsia. Uniparental embryos, having maternal-only or paternal-only genomes (parthenogenotes [PAR] and androgenotes [AND], respectively), are useful models to study placentation. The aim of this work was to reveal the effect of parental genome (maternal and paternal) on placentation. To do this, uniparental (AND and PAR) and biparental (CTR) in vitro produced sheep embryos transferred to recipient females were collected at day 20 of pregnancy and their placentae were analyzed. qPCR analysis showed that imprinted genes (H19, IGF2R and DLK1) were expressed accordingly to their parental origin while the expression f DNA methyltransferases () was disregulated, especially in PAR (P < 0.05). AND placentae were significantly hypomethylated compared to both PAR and CTR (P = 0.023). Chorion-allantoid of AND showed impaired development of vessels and reduced mRNA expression of vasculogenetic factors (ANG2 P = 0.05; VEGFR2 P< 0.001; TIE2 P < 0.001). Morphologically, PAR placentae were characterized by abnormal structure of the trophoectodermal epithelium and reduced total number (P<0.03) of Trophoblastic Binucleate Cells. A reduced implantation rate of both classes of uniparental embryos (P<0.03) was also noted. Our results provide new insights into the characterization of uniparental embryos and demonstrate the complementary role of parental genomes for the correct establishment of pregnancy. Thus, our findings may suggest new targets to improve our understanding of the origin of imprinting-related placental dysfunction.


Subject(s)
Placenta , Sheep/embryology , Animals , DNA Methylation , Female , Genomic Imprinting , Pregnancy
11.
J Gerontol A Biol Sci Med Sci ; 72(11): 1465-1473, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28329103

ABSTRACT

There is growing evidence that advanced maternal age is a risk factor for neurological and neuropsychiatric disorders in offspring. However, it remains unclear whether the altered brain programming induced by advanced maternal age is mediated by pre- or postnatal factors. Here, a mouse model was used to investigate whether pregnancy at advanced age may provoke behavioral and brain gene expression changes in offspring. Swiss Albino mice conceived by 3-month-old males and either 15-18-month-old (n = 11) or 3-month-old control females (n = 5), were delivered by cesarean section, fostered after birth by 3-month-old dams and subjected to a battery of behavioral tests. Furthermore, genome-wide mRNA expression was analyzed in the hippocampi of 4-month-old males offspring using microarrays. Offspring conceived by old mothers exhibited increased ultrasound vocalization activity during separation from the foster mother, increased anxiety-like behaviors in adult life, and altered patterns of hippocampal gene expression, compared to controls. These effects were not reversed by the postnatal maternal care provided by the young foster mothers, suggesting that the altered brain programming is already established at birth, consistent with prenatal effects related to maternal aging.


Subject(s)
Anxiety/genetics , Behavior, Animal , Gene Expression Regulation, Developmental , Hippocampus/metabolism , Pregnancy, Animal , RNA, Messenger/genetics , Stress, Psychological/genetics , Age Factors , Animals , Anxiety/metabolism , Disease Models, Animal , Female , Male , Maternal Age , Mice , Pilot Projects , Polymerase Chain Reaction , Pregnancy , RNA, Messenger/biosynthesis , Stress, Psychological/metabolism
12.
PLoS One ; 11(6): e0157594, 2016.
Article in English | MEDLINE | ID: mdl-27326761

ABSTRACT

Pregnancies obtained by Assisted Reproductive Technologies (ART) are associated with limited maternal nutrient uptake. Our previous studies shown that in vitro culture of sheep embryos is associated with vascularization defects in their placentae and consequent reduction of embryo growth. Autophagy is a pro-survival cellular mechanism triggered by nutrient insufficiency. Therefore, the goal of our present study was to determine if autophagy is involved in early placental development after transfer of in vitro produced (IVP) embryos. To do this, placentae obtained following transfer of IVP sheep embryos were compared with placentae obtained after natural mating (control-CTR). The placentae were collected on day 20 post-fertilization and post-mating, respectively, and were analyzed using molecular (qPCR), ultrastructural and histological/immunological approaches. Our results show drastically increased autophagy in IVP placentae: high levels of expression (p<0.05) of canonical markers of cellular autophagy and a high proportion of autophagic cells (35.08%; p<0.001) were observed. We conclude that high autophagic activity in IVP placentae can be a successful temporary counterbalance to the retarded vasculogenesis and the reduction of foetal growth observed in pregnancies after transfer of IVP embryos.


Subject(s)
Autophagy , Embryo Transfer , Fertilization in Vitro , Placenta/pathology , Sheep/embryology , Animals , Biomarkers/metabolism , Embryo, Mammalian , Female , Mitochondria/ultrastructure , Pregnancy
13.
Cell Rep ; 13(9): 1765-71, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26628361

ABSTRACT

Protamines confer a compact structure to the genome of male gametes. Here, we find that somatic cells can be remodeled by transient expression of protamine 1 (Prm1). Ectopically expressed Prm1 forms scattered foci in the nuclei of fibroblasts, which coalescence into spermatid-like structures, concomitant with a loss of histones and a reprogramming barrier, H3 lysine 9 methylation. Protaminized nuclei injected into enucleated oocytes efficiently underwent protamine to maternal histone TH2B exchange and developed into normal blastocyst stage embryos in vitro. Altogether, our findings present a model to study male-specific chromatin remodeling, which can be exploited for the improvement of somatic cell nuclear transfer.


Subject(s)
Cell Nucleus/metabolism , Chromatin Assembly and Disassembly , Protamines/metabolism , Acetylation , Animals , Cell Nucleus/chemistry , Cells, Cultured , Chromatin/metabolism , DNA/chemistry , DNA/metabolism , Female , Fibroblasts/cytology , Fibroblasts/metabolism , Histones/metabolism , Humans , Male , Methylation , Microscopy, Electron, Transmission , Oocytes/metabolism , Protamines/genetics , Sheep , Spermatids/chemistry , Spermatids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL