Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Medicina (Kaunas) ; 57(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34577794

ABSTRACT

In the battle to quickly identify potential yellow fever arbovirus outbreaks in the Democratic Republic of the Congo, active syndromic surveillance of acute febrile jaundice patients across the country is a powerful tool. However, patients who test negative for yellow fever virus infection are too often left without a diagnosis. By retroactively screening samples for other potential viral infections, we can both try to find sources of patient disease and gain information on how commonly they may occur and co-occur. Several human arboviruses have previously been identified, but there remain many other viral families that could be responsible for acute febrile jaundice. Here, we assessed the prevalence of human herpes viruses (HHVs) in these acute febrile jaundice disease samples. Total viral DNA was extracted from serum of 451 patients with acute febrile jaundice. We used real-time quantitative PCR to test all specimens for cytomegalovirus (CMV), herpes simplex virus (HSV), human herpes virus type 6 (HHV-6) and varicella-zoster virus (VZV). We found 21.3% had active HHV replication (13.1%, 2.4%, 6.2% and 2.4% were positive for CMV, HSV, HHV-6 and VZV, respectively), and that nearly half (45.8%) of these infections were characterized by co-infection either among HHVs or between HHVs and other viral infection, sometimes associated with acute febrile jaundice previously identified. Our results show that the role of HHV primary infection or reactivation in contributing to acute febrile jaundice disease identified through the yellow fever surveillance program should be routinely considered in diagnosing these patients.


Subject(s)
Herpesviridae Infections , Yellow Fever , Cytomegalovirus , DNA, Viral , Democratic Republic of the Congo/epidemiology , Herpesvirus 3, Human , Humans , Yellow Fever/diagnosis , Yellow Fever/epidemiology
2.
J Clin Microbiol ; 57(5)2019 05.
Article in English | MEDLINE | ID: mdl-30814262

ABSTRACT

The genetic characterization of measles viruses is an important tool for measles surveillance. Reverse cold chain requirements for the transportation of samples to reference laboratories are challenging in resource-limited settings. FTA cards facilitate the transport of virologic samples at ambient temperature as noninfectious material; however, the utility of FTA cards for the detection and genotyping of measles virus from clinical samples has not been evaluated. Throat swabs (TS) and oral fluid (OF) samples were collected from suspected measles cases in the Democratic Republic of the Congo. Virus detection (reverse transcription-quantitative real-time PCR [RT-qPCR]) and genotyping (endpoint RT-PCR) were compared for samples from 238 suspected cases; these samples were either transported using the reverse cold chain or at ambient temperature on FTA cards. Virus detection showed excellent positive agreement for OF samples compared to TS (95.3%; confidence interval [CI], 91.6 to 97.4), in contrast to 79.4% (CI, 73.5 to 84.3) for TS on FTA, and 85.5% (CI, 80.2 to 89.6) for OF on FTA compared to OF samples. Genotyping results obtained for a subset of samples indicated that 77.3% of all TS and 71.0% of OF samples would produce genotype information compared to 41.6% of TS and 41.3% of OF on FTA cards. Similar results were found for 16 measles-negative samples that were confirmed as rubella cases. Measles genotype B3 and rubella genotype 2B were detected. FTA cards have limited utility for virologic surveillance of sporadic cases of measles; however, they can be a useful tool for the expansion of virologic surveillance in countries where the reverse cold chain is not available.


Subject(s)
Measles virus/isolation & purification , Mouth/virology , Pharynx/virology , Rubella virus/isolation & purification , Specimen Handling/methods , Democratic Republic of the Congo , Genotype , Genotyping Techniques , Humans , Measles/diagnosis , Measles/virology , Measles virus/genetics , Molecular Diagnostic Techniques , RNA, Viral/genetics , Refrigeration , Rubella/diagnosis , Rubella/virology , Rubella virus/genetics , Saliva/virology , Specimen Handling/instrumentation
3.
J Clin Microbiol ; 55(5): 1299-1312, 2017 05.
Article in English | MEDLINE | ID: mdl-28202798

ABSTRACT

The majority of patients with acute febrile jaundice (>95%) identified through a yellow fever surveillance program in the Democratic Republic of Congo (DRC) test negative for antibodies against yellow fever virus. However, no etiological investigation has ever been carried out on these patients. Here, we tested for hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV) viruses, all of which can cause acute febrile jaundice, in patients included in the yellow fever surveillance program in the DRC. On a total of 498 serum samples collected from suspected cases of yellow fever from January 2003 to January 2012, enzyme-linked immunosorbent assay (ELISA) techniques were used to screen for antibodies against HAV (IgM) and HEV (IgM) and for antigens and antibodies against HBV (HBsAg and anti-hepatitis B core protein [HBc] IgM, respectively), HCV, and HDV. Viral loads and genotypes were determined for HBV and HVD. Viral hepatitis serological markers were diagnosed in 218 (43.7%) patients. The seroprevalences were 16.7% for HAV, 24.6% for HBV, 2.3% for HCV, and 10.4% for HEV, and 26.1% of HBV-positive patients were also infected with HDV. Median viral loads were 4.19 × 105 IU/ml for HBV (range, 769 to 9.82 × 109 IU/ml) and 1.4 × 106 IU/ml for HDV (range, 3.1 × 102 to 2.9 × 108 IU/ml). Genotypes A, E, and D of HBV and genotype 1 of HDV were detected. These high hepatitis prevalence rates highlight the necessity to include screening for hepatitis viruses in the yellow fever surveillance program in the DRC.


Subject(s)
Antibodies, Viral/immunology , Hepacivirus/isolation & purification , Hepatitis A virus/isolation & purification , Hepatitis B virus/isolation & purification , Hepatitis Delta Virus/isolation & purification , Hepatitis E virus/isolation & purification , Yellow Fever/virology , Yellow fever virus/isolation & purification , Democratic Republic of the Congo , Enzyme-Linked Immunosorbent Assay , Hepacivirus/immunology , Hepatitis A virus/immunology , Hepatitis B Core Antigens/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/immunology , Hepatitis Delta Virus/immunology , Hepatitis E virus/immunology , Humans , Jaundice/diagnosis , Jaundice/virology , Seroepidemiologic Studies , Viral Load , Yellow Fever/complications , Yellow fever virus/immunology
4.
Pathogens ; 13(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38535541

ABSTRACT

Polio-associated paralysis is one of the diseases under national surveillance in the Democratic Republic of the Congo (DRC). Although it has become relatively rare due to control measures, non-polio paralysis cases are still reported and constitute a real problem, especially for etiological diagnosis, which is necessary for better management and response. From September 2022 to April 2023, we investigated acute flaccid paralysis (AFP) cases in Kinshasa following an alert from the Provincial Division of Health. All suspected cases and their close contacts were investigated and sampled. Among the 57 sampled patients, 21 (36.8%) were suspects, and 36 (63.2%) were contacts. We performed several etiological tests available in the laboratory, targeting viruses, including Poliovirus, Influenza virus, SARS-CoV-2, Enterovirus, and arboviruses. No virus material was detected, but the serological test (ELISA) detected antibodies against Chikungunya Virus, i.e., 47.4% (27/57) for IgM and 22.8% (13/57) for IgG. Among suspected cases, we detected 33.3% (7/21) with anti-Chikungunya IgM and 14.3% (3/21) of anti-Chikungunya IgG. These results highlight the importance of enhancing the epidemiological surveillance of Chikungunya.

5.
Nat Med ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871006

ABSTRACT

Outbreaks of mpox have historically resulted from zoonotic spillover of clade I monkeypox virus (MPXV) in Central Africa and clade II MPXV in West Africa. In 2022, subclade IIb caused a global epidemic linked to transmission through sexual contact. Here, we describe the epidemiological and genomic features of an mpox outbreak in a mining region in the Eastern Democratic Republic of the Congo (DRC), caused by clade I MPXV. Surveillance data collected between September 2023 and January 2024 identified 241 suspected cases. Genomic analysis demonstrates a distinct clade I lineage divergent from previously circulating strains in the DRC. Of the 108 PCR-confirmed mpox cases, the median age of individuals was 22 years, 51.9% were female, and 29% were sex workers, suggesting a potential role for sexual transmission. The predominance of APOBEC3-type mutations and the estimated emergence time around mid-September 2023 imply recent sustained human-to-human transmission.

6.
Lancet Microbe ; 5(2): e109-e118, 2024 02.
Article in English | MEDLINE | ID: mdl-38278165

ABSTRACT

BACKGROUND: The Democratic Republic of the Congo has had 15 Ebola virus disease (EVD) outbreaks, from 1976 to 2023. On June 1, 2020, the Democratic Republic of the Congo declared an outbreak of EVD in the western Équateur Province (11th outbreak), proximal to the 2018 Tumba and Bikoro outbreak and concurrent with an outbreak in the eastern Nord Kivu Province. In this Article, we assessed whether the 11th outbreak was genetically related to previous or concurrent EVD outbreaks and connected available epidemiological and genetic data to identify sources of possible zoonotic spillover, uncover additional unreported cases of nosocomial transmission, and provide a deeper investigation into the 11th outbreak. METHODS: We analysed epidemiological factors from the 11th EVD outbreak to identify patient characteristics, epidemiological links, and transmission modes to explore virus spread through space, time, and age groups in the Équateur Province, Democratic Republic of the Congo. Trained field investigators and health professionals recorded data on suspected, probable, and confirmed cases, including demographic characteristics, possible exposures, symptom onset and signs and symptoms, and potentially exposed contacts. We used blood samples from individuals who were live suspected cases and oral swabs from individuals who were deceased to diagnose EVD. We applied whole-genome sequencing of 87 available Ebola virus genomes (from 130 individuals with EVD between May 19 and Sept 16, 2020), phylogenetic divergence versus time, and Bayesian reconstruction of phylogenetic trees to calculate viral substitution rates and study viral evolution. We linked the available epidemiological and genetic datasets to conduct a genomic and epidemiological study of the 11th EVD outbreak. FINDINGS: Between May 19 and Sept 16, 2020, 130 EVD (119 confirmed and 11 probable) cases were reported across 13 Équateur Province health zones. The individual identified as the index case reported frequent consumption of bat meat, suggesting the outbreak started due to zoonotic spillover. Sequencing revealed two circulating Ebola virus variants associated with this outbreak-a Mbandaka variant associated with the majority (97%) of cases and a Tumba-like variant with similarity to the ninth EVD outbreak in 2018. The Tumba-like variant exhibited a reduced substitution rate, suggesting transmission from a previous survivor of EVD. INTERPRETATION: Integrating genetic and epidemiological data allowed for investigative fact-checking and verified patient-reported sources of possible zoonotic spillover. These results demonstrate that rapid genetic sequencing combined with epidemiological data can inform responders of the mechanisms of viral spread, uncover novel transmission modes, and provide a deeper understanding of the outbreak, which is ultimately needed for infection prevention and control during outbreaks. FUNDING: WHO and US Centers for Disease Control and Prevention.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , United States , Humans , Animals , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Retrospective Studies , Democratic Republic of the Congo/epidemiology , Phylogeny , Bayes Theorem , Ebolavirus/genetics , Disease Outbreaks , Genomics , Zoonoses/epidemiology
7.
PLoS Negl Trop Dis ; 15(8): e0009670, 2021 08.
Article in English | MEDLINE | ID: mdl-34403427

ABSTRACT

BACKGROUND: Fever with jaundice is a common symptom of some infectious diseases. In public health surveillance within the Democratic Republic of the Congo (DRC), yellow fever is the only recognized cause of fever with jaundice. However, only 5% of the surveillance cases are positive for yellow fever and thus indicate the involvement of other pathogens. Leptospira spp. are the causative agents of leptospirosis, a widespread bacterial zoonosis, a known cause of fever with jaundice. This study aimed to determine the seropositivity of anti-Leptospira antibodies among suspected yellow fever cases and map the geographical distribution of possible leptospirosis in the DRC. METHODS: We conducted a retrospective study using 1,300 samples from yellow fever surveillance in the DRC from January 2017 to December 2018. Serum samples were screened for the presence of IgM against Leptospira spp. by a whole cell-based IgM ELISA (Patoc-IgM ELISA) at the Institut National de Recherche Biomedicale in Kinshasa (INRB) according to World Health Organization (WHO) guidance. Exploratory univariable and multivariable logistic regression analyses were undertaken to assess associations between socio-demographic factors and the presence of Leptospira IgM. RESULTS: Of the 1,300 serum samples screened, 88 (7%) showed evidence of IgM against Leptospira spp. Most positive cases (34%) were young adult males in the 20-29-year group. There were statistically significant associations between having Leptospira IgM antibodies, age, sex, and living area. Observed positive cases were mostly located in urban settings, and the majority lived in the province of Kinshasa. There was a statistically significant association between seasonality and IgM Leptospira spp. positivity amongst those living in Kinshasa, where most of the positive cases occurred during the rainy season. CONCLUSIONS: This study showed that leptospirosis is likely an overlooked cause of unexplained cases of fever with jaundice in the DRC and highlights the need to consider leptospirosis in the differential diagnosis of fever with jaundice, particularly in young adult males. Further studies are needed to identify animal reservoirs, associated risk factors, and the burden of human leptospirosis in the DRC.


Subject(s)
Fever/diagnosis , Fever/epidemiology , Fever/microbiology , Leptospirosis/diagnosis , Leptospirosis/epidemiology , Adolescent , Adult , Animals , Antibodies, Bacterial/blood , Child , Child, Preschool , Democratic Republic of the Congo/epidemiology , Humans , Immunoglobulin M/blood , Infant , Infant, Newborn , Jaundice/diagnosis , Jaundice/epidemiology , Jaundice/microbiology , Leptospira/immunology , Logistic Models , Male , Middle Aged , Multivariate Analysis , Retrospective Studies , Yellow Fever/diagnosis , Yellow Fever/epidemiology , Yellow Fever/microbiology , Young Adult
8.
Viruses ; 13(10)2021 10 03.
Article in English | MEDLINE | ID: mdl-34696418

ABSTRACT

Early March 2019, health authorities of Matadi in the Democratic Republic of the Congo alerted a sudden increase in acute fever/arthralgia cases, prompting an outbreak investigation. We collected surveillance data, clinical data, and laboratory specimens from clinical suspects (for CHIKV-PCR/ELISA, malaria RDT), semi-structured interviews with patients/caregivers about perceptions and health seeking behavior, and mosquito sampling (adult/larvae) for CHIKV-PCR and estimation of infestation levels. The investigations confirmed a large CHIKV outbreak that lasted February-June 2019. The total caseload remained unknown due to a lack of systematic surveillance, but one of the two health zones of Matadi notified 2686 suspects. Of the clinical suspects we investigated (n = 220), 83.2% were CHIKV-PCR or IgM positive (acute infection). One patient had an isolated IgG-positive result (while PCR/IgM negative), suggestive of past infection. In total, 15% had acute CHIKV and malaria. Most adult mosquitoes and larvae (>95%) were Aedes albopictus. High infestation levels were noted. CHIKV was detected in 6/11 adult mosquito pools, and in 2/15 of the larvae pools. This latter and the fact that 2/6 of the CHIKV-positive adult pools contained only males suggests transovarial transmission. Interviews revealed that healthcare seeking shifted quickly toward the informal sector and self-medication. Caregivers reported difficulties to differentiate CHIKV, malaria, and other infectious diseases resulting in polypharmacy and high out-of-pocket expenditure. We confirmed a first major CHIKV outbreak in Matadi, with main vector Aedes albopictus. The health sector was ill-prepared for the information, surveillance, and treatment needs for such an explosive outbreak in a CHIKV-naïve population. Better surveillance systems (national level/sentinel sites) and point-of-care diagnostics for arboviruses are needed.


Subject(s)
Aedes/virology , Chikungunya Fever/epidemiology , Adolescent , Adult , Aged , Animals , Arthralgia/epidemiology , Chikungunya virus/pathogenicity , Child , Child, Preschool , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Female , Fever/epidemiology , Humans , Larva/virology , Malaria/epidemiology , Male , Middle Aged , Mosquito Vectors , Phylogeny , Vector Borne Diseases/epidemiology
9.
PLoS One ; 16(8): e0255795, 2021.
Article in English | MEDLINE | ID: mdl-34358268

ABSTRACT

Surveillance and detection of polioviruses (PV) remain crucial to monitoring eradication progress. Intratypic differentiation (ITD) using the real-time RT-PCR kit is key to the surveillance workflow, where viruses are screened after cell culture isolation before a subset are verified by sequencing. The ITD kit is a series of real-time RT-PCR assays that screens cytopathic effect (CPE)-positive cell cultures using the standard WHO method for virus isolation. Because ITD screening is a critical procedure in the poliovirus identification workflow, validation of performance of real-time PCR platforms is a core requirement for the detection of poliovirus using the ITD kit. In addition, the continual update and improvement of the ITD assays to simplify interpretation in all platforms is necessary to ensure that all real-time machines are capable of detecting positive real-time signals. Four platforms (ABI7500 real-time systems, Bio-Rad CFX96, Stratagene MX3000P, and the Qiagen Rotor-Gene Q) were validated with the ITD kit and a redesigned poliovirus probe. The poliovirus probe in the real-time RT-PCR pan-poliovirus (PanPV) assay was re-designed with a double-quencher (Zen™) to reduce background fluorescence and potential false negatives. The updated PanPV probe was evaluated with a panel consisting of 184 polioviruses and non-polio enteroviruses. To further validate the updated PanPV probe, the new assay was pilot tested in five Global Polio Laboratory Network (GPLN) laboratories (Madagascar, India, Philippines, Pakistan, and Democratic Republic of Congo). The updated PanPV probe performance was shown to reduce background fluorescence and decrease the number of false positives compared to the standard PanPV probe.


Subject(s)
Poliovirus , Real-Time Polymerase Chain Reaction , Feces , Laboratories , Sewage
10.
Emerg Microbes Infect ; 9(1): 1912-1918, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32787529

ABSTRACT

Early 2019, a chikungunya virus (CHIKV) outbreak hit the Democratic Republic of the Congo (DRC). Though seldomly deadly, this mosquito-borne disease presents as an acute febrile (poly)arthralgia often followed by long-term sequelae. Although Aedes aegypti is the primary vector, an amino acid substitution in the viral envelope gene E1 (A226V) is causing concern as it results in increased transmission by Aedes albopictus, a mosquito with a much wider geographical distribution. Between January and March 2019, we collected human and mosquito samples in Kinshasa and Kongo Central province (Kasangulu and Matadi). Of the patients that were tested within 7 days of symptom onset, 49.7% (87/175) were RT-qPCR positive, while in the mosquito samples CHIKV was found in 1/2 pools in Kinshasa, 5/6 pools in Kasangulu, and 8/26 pools in Matadi. Phylogenetic analysis on whole-genome sequences showed that the circulating strain formed a monophyletic group within the ECSA2 lineage and harboured the A226V mutation. Our sequences did not cluster with sequences from previously reported outbreaks in the DRC nor with other known A226V-containing ECSA2 strains. This indicates a scenario of convergent evolution where A226V was acquired independently in response to a similar selection pressure for transmission by Ae. albopictus. This is in line with our entomological data where we detected Ae. albopictus more frequently than Ae. aegypti in two out of three affected areas. In conclusion, our findings suggest that CHIKV is adapting to the increased presence of Aedes albopictus in DRC.


Subject(s)
Aedes/virology , Amino Acid Substitution , Chikungunya Fever/epidemiology , Chikungunya virus/classification , Whole Genome Sequencing/methods , Aedes/classification , Animals , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Democratic Republic of the Congo/epidemiology , Disease Outbreaks , Female , Genome, Viral , Humans , Male , Mosquito Vectors/virology , Phylogeny
11.
Vector Borne Zoonotic Dis ; 18(7): 364-370, 2018 07.
Article in English | MEDLINE | ID: mdl-29768102

ABSTRACT

For more than 95% of acute febrile jaundice cases identified through surveillance for yellow fever, a reemerging arthropod-borne viral disease, no etiological exploration is ever done. The aim of this study was to test for other arthropod-borne viruses that can induce the same symptoms in patients enrolled in the yellow fever surveillance in the Democratic Republic of the Congo (DRC). Of 652 patients included in the surveillance of yellow fever in DRC from January 2003 to January 2012, 453 patients that tested negative for yellow fever virus (YFV) immunoglobulin M (IgM) antibodies were selected for the study. Real-time polymerase chain reaction was performed for the detection of dengue, West Nile, Chikungunya, O'nyong-nyong, Rift Valley fever, Zika, and YFV. The average age of patients was 22.1 years. We reported 16 cases (3.5%; confidence interval [CI]: 0.8-5.2) of dengue (serotypes 1 and 2) and 2 cases (0.4%; CI: 0.0-1.0) of Chikungunya. Three patients were co-infected with the two serotypes of dengue virus. Three cases of dengue were found in early July 2010 from the city of Titule (Oriental province) during a laboratory-confirmed outbreak of yellow fever, suggesting simultaneous circulation of dengue and yellow fever viruses. This study showed that dengue and Chikungunya viruses are potential causes of acute febrile jaundice in the DRC and highlights the need to consider dengue and Chikungunya diagnosis in the integrated disease surveillance and response program in the DRC. A prospective study is necessary to establish the epidemiology of these diseases.


Subject(s)
Antibodies, Viral/blood , Chikungunya Fever/diagnosis , Dengue/diagnosis , Yellow Fever/epidemiology , Adolescent , Adult , Aged , Antibodies, Viral/immunology , Arboviruses/immunology , Chikungunya Fever/blood , Chikungunya Fever/epidemiology , Chikungunya virus/immunology , Child , Child, Preschool , Coinfection , Democratic Republic of the Congo/epidemiology , Dengue/blood , Dengue/epidemiology , Dengue Virus/immunology , Female , Humans , Infant , Male , Middle Aged , Prospective Studies , Serologic Tests , Yellow Fever/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL