Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Physiol ; 589(Pt 20): 4981-96, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21825031

ABSTRACT

Afferent somatosensory activity from the spinal cord has a profound impact on the activity of the brain. Here we investigated the effects of spinal stimulation using direct current, delivered at the thoracic level, on the spontaneous activity and on the somatosensory evoked potentials of the gracile nucleus, which is the main entry point for hindpaw somatosensory signals reaching the brain from the dorsal columns, and of the primary somatosensory cortex in anaesthetized rats. Anodal spinal direct current stimulation (sDCS) increased the spontaneous activity and decreased the amplitude of evoked responses in the gracile nucleus, whereas cathodal sDCS produced the opposite effects. At the level of the primary somatosensory cortex, the changes in spontaneous activity induced by sDCS were consistent with the effects observed in the gracile nucleus, but the changes in cortical evoked responses were more variable and state dependent. Therefore, sDCS can modulate in a polarity-specific manner the supraspinal activity of the somatosensory system, offering a versatile bottom-up neuromodulation technique that could potentially be useful in a number of clinical applications.


Subject(s)
Electric Stimulation , Foot/physiology , Medulla Oblongata/physiology , Somatosensory Cortex/physiology , Spinal Cord/physiology , Animals , Electrodes , Evoked Potentials, Somatosensory , Hindlimb , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL