Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Molecules ; 29(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38792159

ABSTRACT

As a development of our research on biocompatible glycoconjugate probes and specifically multi-chromophoric systems, herein, we report the synthesis and early bactericidal tests of two luminescent glycoconjugates whose basic structure is characterized by two boron dipyrromethene difluoride (BODIPY) moieties and three galactoside rings mounted on an oligophenylene ethynylene (OPE) skeleton. BODIPY fluorophores have found widespread application in many branches of biology in the last few decades. In particular, molecular platforms showing two different BODIPY groups have unique photophysical behavior useful in fluorescence imaging. Construction of the complex architecture of the new probes is accomplished through a convergent route that exploits a series of copper-free Heck-Cassar-Sonogashira cross-couplings. The great emergency due to the proliferation of bacterial infections, in conjunction with growing antibiotic resistance, requires the production of new multifunctional drugs and efficient methods for their targeted delivery to control bacteria-associated diseases. Preliminary studies of the glycoconjugate properties as antibacterial agents against representatives of Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) pathogens, which are associated with chronic infections, indicated significant bactericidal activity ascribable to their structural features.


Subject(s)
Anti-Bacterial Agents , Boron Compounds , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Glycoconjugates/chemistry , Glycoconjugates/pharmacology , Glycoconjugates/chemical synthesis , Molecular Structure , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis
2.
Chemistry ; 29(68): e202302588, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37671982

ABSTRACT

We report the absorption spectra and photophysical properties of homo and hetero-aggregate assemblies of a strongly emissive N-annulated perylene dye (P) and of a dyad made of P and a methyl viologen derivative (P-MV), in ethanol-water solutions. In homo-aggregate assemblies of P, the π-π* fluorescence of the isolated chromophore is replaced by excimer emission at lower energy, with a lifetime of 900 ps, due to excimer formation from the initially prepared excitons. In homo-aggregate assemblies of P-MV, photoinduced charge separation, with formation of P+ -MV- species, occurs in 3 ps with a charge recombination of 20 ps. In hetero-aggregate P/P-MV systems, the light energy absorbed by the P components delocalizes over various P subunits, and when a P-MV unit is reached, charge separation occurs; however, excimer emission is present for P/P-MV ratio larger than 3 : 1, indicating that delocalized excitons within the hetero-aggregate systems extend over a limited number of P chromophores.

3.
Org Biomol Chem ; 21(2): 386-396, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36524706

ABSTRACT

Herein we report the synthesis and biological properties of sugar-conjugated oligophenylene ethynylene (OPE) dyes, used as novel photosensitizers (PSs) for photodynamic treatment (PDT) under blue light. The OPE-bearing glycosides at both ends are successfully prepared by a Pd-catalyzed Sonogashira cross-coupling reaction. The live-cell imaging studies have shown that these OPE glycosides (including glucose, mannose and maltose derivatives) efficiently penetrate the cytoplasm of cultured HeLa cancer cells. No dark toxicity was observed, but upon irradiating the cells under blue light an extraordinary photodynamic effect was observed at low concentrations (10-6-10-8 M). The localization studies indicate that OPE-glucose 1 and OPE-mannose 2 have Golgi patterns, whereas OPE-maltose 3 could be in lysosomes. The PDT and morphological studies in HeLa cells treated with sublethal doses of PS 1-3 revealed that cell death occurs by necrosis.


Subject(s)
Glycosides , Photochemotherapy , Humans , HeLa Cells , Glycosides/pharmacology , Maltose , Mannose , Photochemotherapy/methods , Light , Photosensitizing Agents/pharmacology
4.
Phys Chem Chem Phys ; 25(3): 1504-1512, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36448376

ABSTRACT

The last few decades have seen an impressive development in molecular-based artificial photosynthesis, thanks to the design of integrated light-harvesting antennae, charge separation systems, and catalysts for water oxidation or hydrogen production based on covalently linked subunits. However, in recent years, self-assembly and spontaneous aggregation of components emerged - sometimes also through serendipity - for the preparation of multicomponent systems aimed to perform the basic processes needed for artificial photosynthesis. Here we critically discuss some key articles that have recently shown the potential of self-assembly for artificial photosynthesis, ranging from self-assembly of antennae and charge separation systems to integrated antenna/catalyst assemblies, to planned co-localization of various components into restricted environments. It is evident that self-assembly can generate emerging properties with respect to the non-aggregated species, and such emerging properties can be quite convenient for designing efficient photocatalytic systems.


Subject(s)
Photosynthesis , Water , Oxidation-Reduction , Catalysis , Hydrogen
5.
Chemistry ; 28(5): e202103310, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-34752652

ABSTRACT

The structure of a decanuclear photo- and redox-active dendrimer based on Ru(II) polypyridine subunits, suitable as a light-harvesting multicomponent species for artificial photosynthesis, has been investigated by means of computer modelling. The compound has the general formula [Ru{(µ-dpp)Ru[(µ-dpp)Ru(bpy)2 ]2 }3 ](PF6 )20 (Ru10; bpy=2,2'-bipyridine; dpp=2,3-bis(2'-pyridyl)pyrazine). The stability of possible isomers of each monomer was investigated by performing classical molecular dynamics (MD) and quantum mechanics (QM) simulations on each monomer and comparing the results. The number of stable isomers is reduced to 36 with a prevalence of MER isomerism in the central core, as previously observed by NMR experiments. The simulations on decanuclear dendrimers suggest that the stability of the dendrimer is not linked to the stability of the individual monomers composing the dendrimer but rather governed by the steric constrains originated by the multimetallic assembly. Finally, the self-aggregation of Ru10 and the distribution of the counterions around the complexes is investigated using Molecular Dynamics both in implicit and explicit acetonitrile solution. In representative examples, with nine and four dendrimers, the calculated pair distribution function for the ruthenium centers suggests a self-aggregation mechanism in which the dendrimers are approaching in small blocks and then aggregate all together. Scanning transmission electron microscopy complements the investigation, supporting the formation of different aggregates at various concentrations.


Subject(s)
Dendrimers , Ruthenium , Molecular Dynamics Simulation , Oxidation-Reduction , Photosynthesis
6.
Org Biomol Chem ; 20(14): 2742-2763, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35137764

ABSTRACT

Luminescent BODIPY-sugar probes have stimulated the attention of researchers for the potential applications of such molecular systems in bio-imaging. The presence of carbohydrate units confers unique structural and biological features, beside enhancement of water solubility and polarity. On the other hand, BODIPY (BOronDiPYrromethene) derivatives represent eclectic and functional luminescent molecules because of their outstanding photophysical properties. This article provides a review on the synthesis and applications of BODIPY-linked glycosyl probes in which the labelling of complex carbohydrates with BODIPY allowed the disclosing of their in vivo behaviour or where the sugar constitutes a recognition element for specific targeting probes, or, finally, in which the stereochemical characteristics of the carbohydrate hydroxyl groups play as structural elements for assembling more than one photoactive subunit, resulting in functional supramolecular molecules with modulable properties. We describe the methods we have used to construct various multiBODIPY molecular systems capable of functioning as artificial antennas exhibiting extremely efficient and fast photo-induced energy transfer. Some of these systems have been designed to allow the modulation of energy transfer efficiency and emission color, and intensity dependent on their position within a biological matrix. Finally, future perspectives for such BODIPY-based functional supramolecular sugar systems are also highlighted.


Subject(s)
Boron Compounds , Carbohydrates , Boron Compounds/chemistry , Energy Transfer , Sugars
7.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076937

ABSTRACT

In this paper we describe the synthesis of a novel bichromophoric system in which an efficient photoinduced intercomponent energy transfer process is active. The dyad consists of one subunit of curcumin and one of BODIPY and is able to emit in the far-red region, offering a large Stokes shift, capable of limiting light scattering processes for applications in microscopy. The system has been encapsulated in MCM-41 nanoparticles with dimensions between 50 and 80 nm. Both the molecular dyad and individual subunits were tested with different cell lines to study their effective applicability in bioimaging. MCM-41 nanoparticles showed no reduction in cell viability, indicating their biocompatibility and bio-inertness and making them capable of delivering organic molecules even in aqueous-based formulations, avoiding the toxicity of organic solvents. Encapsulation in the porous silica structure directed the location of the bichromophoric system within cytoplasm, while the dyad alone stains the nucleus of the hFOB cell line.


Subject(s)
Curcumin , Nanoparticles , Boron Compounds/chemistry , Curcumin/pharmacology , Nanoparticles/chemistry , Silicon Dioxide
8.
Chemistry ; 27(68): 16904-16911, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34418201

ABSTRACT

The luminophore Ru(bpy)2 (dcbpy)2+ (bpy=2,2'-bipyridine; dcbpy=4,4'-dicarboxy-2,2'-bipyridine) is covalently linked to a chitosan polymer; crosslinking by tripolyphosphate produced Ru-decorated chitosan fibers (NS-RuCh), with a 20 : 1 ratio between chitosan repeating units and RuII chromophores. The properties of the RuII compound are unperturbed by the chitosan structure, with NS-RuCh exhibiting the typical metal-to-ligand charge-transfer (MLCT) absorption and emission bands of RuII complexes. When crosslinks are made in the presence of IrO2 nanoparticles, such species are encapsulated within the nanofibers, thus generating the IrO2 ⊂NS-RuCh system, in which both RuII photosensitizers and IrO2 water oxidation catalysts are within the nanofiber structures. NS-RuCh and IrO2 ⊂NS-RuCh have been characterized by dynamic light scattering, scanning electronic microscopy, and energy-dispersive X-ray analysis, which indicated a 2 : 1 ratio between RuII chromophores and IrO2 species. Photochemical water oxidation has been investigated by using IrO2 ⊂NS-RuCh as the chromophore/catalyst assembly and persulfate anions as the sacrificial species: photochemical water oxidation yields O2 with a quantum yield (Φ) of 0.21, definitely higher than the Φ obtained with a similar solution containing separated Ru(bpy)3 2+ and IrO2 nanoparticles (0.05) or with respect to that obtained when using NS-RuCh and "free" IrO2 nanoparticles (0.10). A fast hole-scavenging process (rate constant, 7×104  s-1 ) involving the oxidized photosensitizer and the IrO2 catalyst within the IrO2 ⊂NS-RuCh system is behind the improved photochemical quantum yield of IrO2 ⊂NS-RuCh.


Subject(s)
Chitosan , Nanoparticles , Organometallic Compounds , Ruthenium , Iridium , Water
9.
Photochem Photobiol Sci ; 19(1): 105-113, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31930262

ABSTRACT

We report on the light-switch behaviour of two head-to-tail expanded bipyridinium species as a function of their interaction with calf thymus DNA and polynucleotides. In particular, both DNA and polynucleotides containing exclusively adenine or guanine moieties quench the luminescence of the fused expanded bipyridinium species. This behaviour has been rationalized demonstrating that a reductive photoinduced electron transfer process takes place involving both adenine or guanine moieties. The charge separated state so produced recombines in the tens of picoseconds. These results could help in designing new organic substrates for application in DNA probing technology and lab on chip-based sensing systems.


Subject(s)
DNA Probes/chemistry , DNA/analysis , Fluorescent Dyes/chemistry , Optical Imaging , Pyridinium Compounds/chemistry , Animals , Cattle , DNA Probes/chemical synthesis , Fluorescent Dyes/chemical synthesis , Molecular Structure , Oxidation-Reduction , Pyridinium Compounds/chemical synthesis , Spectroscopy, Near-Infrared , Ultraviolet Rays
10.
Inorg Chem ; 58(9): 5807-5817, 2019 May 06.
Article in English | MEDLINE | ID: mdl-31017774

ABSTRACT

Three new linearly arranged bichromophoric systems 1-3 have been prepared, and their photophysical properties have been studied, taking also advantage of femtosecond pump-probe transient absorption spectroscopy. The three compounds contain the same chromophores, that is a Ru(II)-terpy-like species and a fused expanded bipyridinium (FEBP) unit, separated by three different, variously methylated biphenylene-type bridges. The chromophores have been selected to be selectively addressable, and excitation involving the Ru-based or the FEBP-based dyes results in different excited-state decays. Upon Ru-based excitation at 570 nm, oxidative photoinduced electron transfer (OPET) takes place in 1-3 from the 3MLCT state; however, the charge-separated species does not accumulate, indicating that the charge recombination rate constant exceeds the OPET rate constant. Upon excitation of the organic dye at 400 nm, the FEBP-based 1π-π* level is prepared, which undergoes a series of intercomponent decay events, including (i) electron-exchange energy transfer leading to the MLCT manifold (SS-EnT), which successively decays according to 570 nm excitation, and (ii) reductive photoinduced electron transfer (RPET), leading to the preparation of the charge-separated (CS) state. Reductive PET, involving the FEBP-based singlet state, is much faster than oxidative PET, involving the MLCT triplet state, essentially because of driving force reasons. The rate constant of CR is intermediate between the rate constants of OPET and RPET, and this makes 1-3 capable to selectively read the 400 nm excitation as an active input to prepare the CS state, whereas excitation at wavelengths longer than 480 nm is inefficient to accumulate the CS state. Moreover, intriguing differences between the rate constants of the various processes in 1-3 have been analyzed and interpreted according to the superexchange theory for electron transfer. This allowed us to uncover the role of the electron-transfer and hole-transfer superexchange pathways in promoting the various intercomponent photoinduced decay processes occurring in 1-3.

11.
Chemistry ; 24(64): 16972-16976, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30198621

ABSTRACT

Two new tetralkylammonium-OPEs, bearing one or two positively charged groups directly linked to the aromatic residues and two ß-d-glucopyranose terminations, were synthesized. Their peculiar structural features, joining the biologically relevant sugar moieties, flat aromatic cores and positive charges, make these luminescent dyes soluble in aqueous media and able to strongly interact with DNA. As a result of UV/Vis spectral variations, DNA melting temperature measures, viscometric titrations and induced CD, we propose a partial insertion of the OPEs aromatic core into the helix, stabilized by glucose H-bonding with the groups accessible from the grooves. This interaction leads to the quenching of the OPE luminescence due to guanine reduction. The biocompatibility of the monocationic OPE with healthy and cancer cells, and the reduction of proliferation in HEp-2 cancer cells induced by the dicationic one, make this class of compounds promising for future biological applications.


Subject(s)
Antineoplastic Agents/chemistry , Carbohydrates/chemistry , Drug Design , Polymers/chemistry , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation , Chlorocebus aethiops , Circular Dichroism , DNA/chemistry , DNA/metabolism , Humans , Kinetics , Spectrophotometry , Transition Temperature , Vero Cells
12.
Chemistry ; 23(65): 16497-16504, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-28922481

ABSTRACT

Self-assembly is a powerful synthetic tool that has led to the development of one-, two- and three-dimensional architectures. From MOFs to molecular flasks, self-assembled materials have proven to be of great interest to the scientific community. Here we describe a strategy for the construction and de-construction of a supramolecular structure through unprecedented photo-induced assembly and dis-assembly. The combination of two approaches, a [n×1]-directional bonding strategy and a ligand photo-dissociation strategy, allows the photo-induced assembly of a polypyridyl RuII precursor into a discrete molecular square. Diffusion-ordered NMR spectroscopy confirmed the synthesis of a higher volume species, while the identity of the species was established by high-resolution mass spectrometry and single-crystal X-ray diffraction studies. The self-assembled square is not obtained by classical thermal techniques in similar conditions, but is obtained only by light-irradiation. The tetraruthenium square has an excited-state lifetime (135 ns), 40 times that of its mononuclear precursor and its luminescence quantum yield (1.0 %) is three orders of magnitude higher. These remarkable luminescence properties are closely related to the relatively rigid square structure of the tetraruthenium assembly, as suggested by slow radiationless decay and transient absorption spectroscopy. The results described herein are a rare example of photo-induced assembly and dis-assembly processes, and can open the way to a new avenue in supramolecular chemistry, leading to the preparation of structurally organized supermolecules by photochemical techniques.

13.
Org Biomol Chem ; 15(15): 3192-3195, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28362444

ABSTRACT

The remarkable affinity of deca-carboxylatopillar[5]arene WP5 towards the aminoglycoside antibiotic, amikacin, in aqueous media is reported; in vitro studies on Gram-positive bacteria (Staphylococcus aureus) show that drug entrapment inside WP5 also takes place in the presence of the microrganisms, thus pointing to WP5 as an appealing carrier for amikacin targeted delivery.


Subject(s)
Amikacin/chemistry , Anti-Bacterial Agents/chemistry , Drug Carriers/chemistry , Quaternary Ammonium Compounds/chemistry , Water/chemistry , Amikacin/pharmacology , Anti-Bacterial Agents/pharmacology , Calixarenes , Solubility , Staphylococcus aureus/drug effects
14.
Chemphyschem ; 16(15): 3147-50, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26331881

ABSTRACT

The first donor-acceptor species in which a strongly emissive N-annulated perylene dye is connected to a methylviologen electron acceptor unit via its macrocyclic nitrogen atom, is prepared by a stepwise, modular procedure. The absorption spectra, redox behavior, spectroelectrochemistry and photophysical properties of this dyad and of its model species are investigated, also by pump-probe fs transient absorption spectroscopy. Photoinduced oxidative electron transfer from the excited state of the dyad, centered on the N-annulated perylene subunit, to the appended methyviologen electron acceptor takes place in a few ps. The charge-separated species recombines in 19 ps. Our results indicate that N-annulated perylene can be connected to functional units by taking advantage of the macrocyclic nitrogen, an option never used until now, without losing their properties, so opening the way to new designing approaches.

15.
Faraday Discuss ; 185: 121-41, 2015.
Article in English | MEDLINE | ID: mdl-26400662

ABSTRACT

The increasing global energy demand has stimulated great recent efforts in investigating new solutions for artificial photosynthesis, a potential source of clean and renewable solar fuel. In particular, according to the generally accepted modular approach aimed at optimising separately the different compartments of the entire process, many studies have focused on the development of catalytic systems for water oxidation to oxygen. While in recent years there have been many reports on new catalytic systems, the mechanism and the active intermediates operating the catalysis have been less investigated. Well-defined, molecular catalysts, constituted by transition metals stabilised by a suitable ligand pool, could help in solving this aspect. However, in some cases molecular species have been shown to evolve to active metal oxides that constitute the other side of this catalysis dichotomy. In this paper, we address the evolution of tetracobalt(III) cubanes, stabilised by a pyridine/acetate ligand pool, to active species that perform water oxidation to oxygen. Primary evolution of the cubane in aqueous solution is likely initiated by removal of an acetate bridge, opening the coordination sphere of the cobalt centres. This cobalt derivative, where the pristine ligands still impact on the reactivity, shows enhanced electron transfer rates to Ru(bpy)3(3+) (hole scavenging) within a photocatalytic cycle with Ru(bpy)3(2+) as the photosensitiser and S2O8(2-) as the electron sink. A more accentuated evolution occurs under continuous irradiation, where Electron Paramagnetic Resonance (EPR) spectroscopy reveals the formation of Co(ii) intermediates, likely contributing to the catalytic process that evolves oxygen. All together, these results confirm the relevant effect of molecular species, in particular in fostering the rate of the electron transfer processes involved in light activated cycles, pivotal in the design of a photoactive device.

16.
Photochem Photobiol Sci ; 14(5): 909-18, 2015 May.
Article in English | MEDLINE | ID: mdl-25722091

ABSTRACT

A novel molecular dyad, 1, made of a dinuclear {[Re2(µ-X)2(CO)6(µ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.


Subject(s)
Electrons , Fullerenes/chemistry , Photochemical Processes , Pyridazines/chemistry , Rhenium/chemistry , Energy Transfer , Molecular Structure , Oxidation-Reduction , Spectrum Analysis , Time Factors , Toluene/chemistry
17.
Angew Chem Int Ed Engl ; 54(23): 6775-9, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25925409

ABSTRACT

A high-yielding synthesis of a series of polyimide dendrimers, including decacyclene- and perylene-containing dendrimer D6, in which two types of polyimide dyes are present, is reported. In these constructs, the branching unit is represented by trisphenylamine, and the solubilizing chains by N-9-heptadecanyl-substituted perylene diimides. The photophysical properties of the dendrimers have been studied by absorption, steady-state, and time-resolved emission spectroscopy and pump-probe transient absorption spectroscopy. Photoinduced charge-separated (CS) states are formed on the femtosecond timescale upon visible excitation. In particular, in D6, two different CS states can be formed, involving different subunits that decays independently with different lifetimes (ca. 10-100 ps).

18.
J Am Chem Soc ; 136(23): 8189-92, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24878238

ABSTRACT

The first water oxidation catalyst containing only vanadium atoms as metal centers is reported. The compound is the mixed-valence [(V(IV)5V(V)1)O7(OCH3)12](-) species, 1. Photoinduced water oxidation catalyzed by 1, in the presence of Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) and Na2S2O8, in acetonitrile/aqueous phosphate buffer takes place with a quantum yield of 0.20. A hole scavenging reaction between the photochemically generated Ru(bpy)3(3+) and 1 occurs with a bimolecular rate constant of 2.5 × 10(8) M(-1) s(-1). The time-resolved formation of the oxidized molecular catalyst 1(+) in bimolecular reactions is also evidenced for the first time by transient absorption spectroscopy. This result opens the way to the use of less expensive vanadium clusters as water oxidation catalysts in artificial photosynthesis schemes.


Subject(s)
Light , Organometallic Compounds/chemistry , Vanadium/chemistry , Water/chemistry , 2,2'-Dipyridyl/chemistry , Catalysis , Models, Molecular , Oxidation-Reduction , Photochemical Processes
19.
J Org Chem ; 79(11): 5113-20, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24815093

ABSTRACT

A new family of oligo(phenylene ethynylene) (OPE) glucosides has been prepared and characterized. Our results demonstrate that fine-tuning of their photophysical properties can be obtained by acting on the electronics of the core and molecular skeleton. Modulation of the hydrophobic chain length and substituents on the central moieties influences the bioaffinity too. In particular, introducing a NMe2 group on the aromatic central core affords a highly efficient biocompatible fluorescent probe that can be taken up in cytoplasmic vesicles of HEp-2 cells (cells from epidermoid carcinoma larynx tissue). The photophysical behavior, high quantum yield, and stability open the way to the use of the OPE family as stains for cellular imaging analysis by fluorescence microscopy.


Subject(s)
Carcinoma, Squamous Cell/chemistry , Fluorescent Dyes/chemistry , Glucosides/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Glucosides/chemistry , Humans , Molecular Structure , Quantum Theory
20.
Chemistry ; 19(27): 8900-12, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23695973

ABSTRACT

A series of new compounds in which various Bodipy dyes are grafted logically on triptycene rigid structures are synthesized and characterized, and their absorption spectra and photophysical properties are studied, also by pump-probe transient absorption spectroscopy. The studied compounds are: the mono-Bodipy species TA, TB, and TC (where A, B, and C identify different Bodipy subunits absorbing and emitting at different wavelengths), the multichromophore species TA3 , which bears three identical A subunits, and the three multichromophoric species TAB, TBC, and TABC, all of them containing at least two different types of Bodipy subunits. The triptycene moiety plays the role of a rigid scaffold, keeping the various dyes at predetermined distances and allowing for a three-dimensional structural arrangement of the multichromophoric species. The absorption spectra of the multichromophoric Bodipy species are essentially additive, indicating that negligible inter-chromophoric interaction takes place at the ground state. Luminescence properties and transient absorption spectroscopy indicate that a very fast (on the picosecond time scale) and efficient photoinduced energy transfer occurs in all the multi-Bodipy species, with the lower-energy Bodipy subunits of each multi-Bodipy compounds playing the role of an electronic energy collector. In TAB, an energy transfer from the A-type Bodipy subunit to the B-type one takes place with a rate constant of 1.6×10(10) s(-1), whereas in TBC an energy transfer from the B-type Bodipy subunit to the C-type subunit is bi-exponential, exhibiting rate constants of 1.7×10(11) and 1.9×10(10) s(-1); the possible presence of different conformers with different donor-acceptor distances in this bichromophoric species is proposed to cause the bi-exponential energy-transfer process. Interpretation of the intricate energy-transfer pathways occurring in TABC is made with the help of the processes identified in the bichromophoric compounds. In all cases, the measured energy-transfer rate constants agree with a Förster mechanism for the energy-transfer processes.

SELECTION OF CITATIONS
SEARCH DETAIL