ABSTRACT
Ovarian cancer (OC) grows and interacts constantly with a complex microenvironment, in which immune cells, fibroblasts, blood vessels, signal molecules and the extracellular matrix (ECM) coexist. This heterogeneous environment provides structural and biochemical support to the surrounding cells and undergoes constant and dynamic remodeling that actively promotes tumor initiation, progression, and metastasis. Despite the fact that traditional 2D cell culture systems have led to relevant medical advances in cancer research, 3D cell culture models could open new possibilities for the development of an in vitro tumor microenvironment more closely reproducing that observed in vivo. The implementation of materials science and technology into cancer research has enabled significant progress in the study of cancer progression and drug screening, through the development of polymeric scaffold-based 3D models closely recapitulating the physiopathological features of native tumor tissue. This article provides an overview of state-of-the-art in vitro tumor models with a particular focus on 3D OC cell culture in pre-clinical studies. The most representative OC models described in the literature are presented with a focus on hydrogel-based scaffolds, which guarantee soft tissue-like physical properties as well as a suitable 3D microenvironment for cell growth. Hydrogel-forming polymers of either natural or synthetic origin investigated in this context are described by highlighting their source of extraction, physical-chemical properties, and application for 3D ovarian cancer cell culture.
Subject(s)
Hydrogels , Ovarian Neoplasms , Carcinoma, Ovarian Epithelial , Extracellular Matrix/chemistry , Humans , Hydrogels/chemistry , Polymers/chemistry , Tumor MicroenvironmentABSTRACT
Polyhydroxyalkanoates are biopolyesters whose biocompatibility, biodegradability, environmental sustainability, processing versatility, and mechanical properties make them unique scaffolding polymer candidates for tissue engineering. The development of innovative biomaterials suitable for advanced Additive Manufacturing (AM) offers new opportunities for the fabrication of customizable tissue engineering scaffolds. In particular, the blending of polymers represents a useful strategy to develop AM scaffolding materials tailored to bone tissue engineering. In this study, scaffolds from polymeric blends consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(D,L-lactide-co-glycolide) (PLGA) were fabricated employing a solution-extrusion AM technique, referred to as Computer-Aided Wet-Spinning (CAWS). The scaffold fibers were constituted by a biphasic system composed of a continuous PHBV matrix and a dispersed PLGA phase which established a microfibrillar morphology. The influence of the blend composition on the scaffold morphological, physicochemical, and biological properties was demonstrated by means of different characterization techniques. In particular, increasing the content of PLGA in the starting solution resulted in an increase in the pore size, the wettability, and the thermal stability of the scaffolds. Overall, in vitro biological experiments indicated the suitability of the scaffolds to support murine preosteoblast cell colonization and differentiation towards an osteoblastic phenotype, highlighting higher proliferation for scaffolds richer in PLGA.
Subject(s)
Polyesters , Tissue Scaffolds , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Regeneration , Hydroxybutyrates , Mice , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Tissue Engineering/methods , Tissue Scaffolds/chemistryABSTRACT
Jellyfishes are considered a new potential resource in food, pharmaceutical and biomedical industries. In these latter cases, they are studied as source of active principles but are also exploited to produce marine collagen. In the present work, jellyfish skin polysaccharides (JSP) with glycosaminoglycan (GAG) features were extracted from Rhizostoma pulmo, a main blooming species of Mediterranean Sea, massively augmented by climate leaded "jellyfishication" of the sea. Two main fractions of R. pulmo JSP (RP-JSPs) were isolated and characterized, namely a neutral fraction (RP-JSP1) and a sulphate rich, negatively charged fraction (RP-JSP2). The two fractions have average molecular weights of 121 kDa and 590 kDa, respectively. Their sugar composition was evaluated through LC-MS analysis and the result confirmed the presence of typical GAG saccharides, such as glucose, galactose, glucosamine and galactosamine. Their use as promoters of wound healing was evaluated through in vitro scratch assay on murine fibroblast cell line (BALB/3T3 clone A31) and human keratinocytes (HaCaT). Both RP-JSPs demonstrated an effective confluency rate activity leading to 80% of scratch repair in two days, promoting both cell migration and proliferation. Additionally, RP-JSPs exerted a substantial protection from oxidative stress, resulting in improved viability of treated fibroblasts exposed to H2O2. The isolated GAG-like polysaccharides appear promising as functional component for biomedical skin treatments, as well as for future exploitation as pharmaceutical excipients.
Subject(s)
Cnidaria , Scyphozoa , Animals , Carbohydrates , Collagen/metabolism , Excipients , Fibroblasts/metabolism , Galactosamine , Galactose , Glucosamine , Glucose , Glycosaminoglycans , Humans , Hydrogen Peroxide , Mice , Polysaccharides/pharmacology , Scyphozoa/metabolism , Sulfates , Wound HealingABSTRACT
The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow CdS QDs without any agglomeration. The 1H NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities. The prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated. The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical sensors purposes.
Subject(s)
Biosensing Techniques , Quantum Dots , Amino Acids , Biosensing Techniques/methods , Cadmium , Cadmium Compounds , Contrast Media , Gelatin , Hydrogen Peroxide , Quantum Dots/chemistry , Sulfides/chemistryABSTRACT
Recurrent microbial infections are a major cause of surgical failure and morbidity. Wound healing strategies based on hydrogels have been proposed to provide at once a barrier against pathogen microbial colonization, as well as a favorable environment for tissue repair. Nevertheless, most biocompatible hydrogel materials are more bacteriostatic than antimicrobial materials, and lack specific action against pathogens. Silver-loaded polymeric nanocomposites have efficient and selective activity against pathogenic organisms exploitable for wound healing. However, the loading of metallic nanostructures into hydrogels represents a major challenge due to the low stability of metal colloids in aqueous environments. In this context, the aim of the present study was the development of highly stable silver nanoparticles (AgNPs) as novel potential antimicrobial agents for hyaluronic acids hydrogels. Two candidate stabilizing agents obtained from natural and renewable sources, namely cellulose nanocrystals and ulvan polysaccharide, were exploited to ensure high stability of the silver colloid. Both stabilizing agents possess inherent bioactivity and biocompatibility, as well as the ability to stabilize metal nanostructures thanks to their supramolecular structures. Silver nitrate reduction through sodium borohydride in presence of the selected stabilizing agents was adopted as a model strategy to achieve AgNPs with narrow size distribution. Optimized AgNPs stabilized with the two investigated polysaccharides demonstrated high stability in phosphate buffer saline solution and strong antimicrobial activity. Loading of the developed AgNPs into photocrosslinked methacrylated hyaluronic acid hydrogels was also investigated for the first time as an effective strategy to develop novel antimicrobial wound dressing materials.
Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Metal Nanoparticles/chemistry , Silver/chemistry , Wound Healing/drug effects , Bandages , Cellulose/chemistry , Nanocomposites/chemistry , Polysaccharides/chemistryABSTRACT
The worldwide diffusion of nanotechnologies into products nowadays has completely revolutionized human life, providing novel comfort and benefits. Their inclusion in food and cosmetic has a heavy impact over the market, allowing the development of higher value products with enhanced properties. Natural origin polymers and in particular polysaccharides represent a versatile platform of materials for the development of micro/nanostructured additives for food and cosmetic products due to their chemical versatility, biocompatibility, and abundance. Here, we review the current applications of polysaccharides-based micro/nanostructures, taking into consideration the precursors' production, isolation, and extraction methods and highlighting the advantages, possible drawbacks, and market diffusion.
Subject(s)
Cosmetics/chemistry , Food Additives/chemistry , Nanostructures/chemistry , Polysaccharides/chemistry , Agaricales/chemistry , Biocompatible Materials/chemistry , Biological Products/chemistry , Cellulose/chemistry , Complex Mixtures/chemistry , Edible Grain/chemistry , Humans , Phaeophyceae/chemistryABSTRACT
In primary ciliary dyskinesia (PCD) patients, Pseudomonas aeruginosa is a major opportunistic pathogen, frequently involved in chronic infections of the lower airways. Infections by this bacterial species correlates with a worsening clinical prognosis and recalcitrance to currently available therapeutics. The antimicrobial peptide, lin-SB056-1, in combination with the cation chelator ethylenediaminetetraacetic acid (EDTA), was previously demonstrated to be bactericidal against P. aeruginosa in an artificial sputum medium. The purpose of this study was to validate the anti-P. aeruginosa activity of such a combination in PCD sputum and to evaluate the in vitro anti-virulence effects of EDTA. In combination with EDTA, lin-SB056-1 was able to significantly reduce the load of endogenous P. aeruginosa ex vivo in the sputum of PCD patients. In addition, EDTA markedly reduced the production of relevant bacterial virulence factors (e.g., pyocyanin, proteases, LasA) in vitro by two representative mucoid strains of P. aeruginosa isolated from the sputum of PCD patients. These results indicate that the lin-SB056-1/EDTA combination may exert a dual antimicrobial and anti-virulence action against P. aeruginosa, suggesting a therapeutic potential against chronic airway infections sustained by this bacterium.
Subject(s)
Anti-Bacterial Agents/therapeutic use , Ciliary Motility Disorders/complications , Edetic Acid/therapeutic use , Peptides/therapeutic use , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Adult , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Chelating Agents/pharmacology , Chelating Agents/therapeutic use , Ciliary Motility Disorders/microbiology , Edetic Acid/pharmacology , Humans , Peptides/pharmacology , Pseudomonas Infections/complications , Pseudomonas aeruginosa/physiology , Sputum/microbiologyABSTRACT
The employment of a tissue engineering scaffold able to release an antimicrobial agent with a controlled kinetics represents an effective tool for the treatment of infected tissue defects as well as for the prevention of scaffolds implantation-related infectious complications. This research activity was aimed at the development of additively manufactured star poly(ε-caprolactone) (*PCL) scaffolds loaded with levofloxacin, investigated as antimicrobial fluoroquinolone model. For this purpose a computer-aided wet-spinning technique allowing functionalizing the scaffold during the fabrication process was explored. Scaffolds with customized composition, microstructure and anatomical external shape were developed by optimizing the processing parameters. Morphological, thermal and mechanical characterization showed that drug loading did not compromise the fabrication process and the final performance of the scaffolds. The developed *PCL scaffolds showed a sustained in vitro release of the loaded antibiotic for 5 weeks. The proposed computer-aided wet-spinning technique appears well suited for the fabrication of anatomical scaffolds endowed with levofloxacin-releasing properties to be tested in vivo for the regeneration of long bone critical size defects in a rabbit model.
Subject(s)
Levofloxacin/pharmacology , Polyesters/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Computer-Aided Design , Levofloxacin/chemistry , Microscopy, Electron, Scanning , Rabbits , Stress, Mechanical , Surface PropertiesABSTRACT
Effective wound management presents a substantial financial and time-related obstacle for healthcare institutions. Enhancing healthcare involves implementing innovative wound treatment methods to minimize healing time and expenses. This study is centered on the development of a non-toxic wound dressing using only two natural polymers and an enzyme. By adding 10 % wt microbial transglutaminase, the mechanical properties of the dressing were improved. This formulation increased the swelling rate by 70 %, deswelling rate by 15 %, conversion rate by 9 %, and networking rate by 20 %. Additionally, the non-toxic dressing showed a cell viability rate of 106 %. In drug delivery tests, explosive release behavior was observed, which is advantageous for open wounds. Cell staining experiments were also carried out to evaluate wound behavior in terms of collagen formation, granulation, and inflammation. The results suggest that the optimized hydrogel has great potential as a wound dressing. Its excellent absorption, antioxidant, and biocompatibility characteristics enhance tissue granulation rate and reduce wound treatment time by half compared to conventional methods, while also minimizing scarring risk. This innovative treatment, which eliminates the need for frequent changes, is beneficial for both secondary intentions and severe open wounds requiring bottom-up healing.
Subject(s)
Alginates , Bandages , Curcumin , Gelatin , Hydrogels , Wound Healing , Curcumin/pharmacology , Curcumin/chemistry , Gelatin/chemistry , Alginates/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Wound Healing/drug effects , Humans , Transglutaminases/metabolism , Animals , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacologyABSTRACT
Tissue engineering represents an advanced therapeutic approach for the treatment of bone tissue defects. Polyhydroxyalkanoates are a promising class of natural polymers in this context thanks to their biocompatibility, processing versatility, and mechanical properties. The aim of this study is the development by computer-aided wet-spinning of novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based composite scaffolds for bone engineering. In particular, PHBV scaffolds are loaded with hydroxyapatite (HA), an osteoinductive ceramic, in order to tailor their biological activity and mechanical properties. PHBV blending with poly(lactide-co-glycolide) (PLGA) is also explored to increase the processing properties of the polymeric mixture used for composite scaffold fabrication. Different HA percentages, up to 15% wt., can be loaded into the PHBV or PHBV/PLGA scaffolds without compromising their interconnected porous architecture, as well as the polymer morphological and thermal properties, as demonstrated by scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. In addition, HA loading results in increased scaffold compressive stiffness to levels comparable to those of trabecular bone tissue, as well as in higher in vitro MC3T3-E1 cell viability and production of mineralized extracellular matrix, in comparison to what observed for unloaded scaffolds. The observed mechanical and biological properties suggest the suitability of the developed scaffolds for bone engineering.
Subject(s)
Durapatite , Polyesters , Tissue Engineering , Tissue Scaffolds , Durapatite/chemistry , Durapatite/pharmacology , Polyesters/chemistry , Polyesters/pharmacology , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Animals , Mice , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Materials Testing , Porosity , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , PolyhydroxybutyratesABSTRACT
Additive manufacturing (AM) holds great potential for processing natural polymer hydrogels into 3D scaffolds exploitable for tissue engineering and in vitro tissue modelling. The aim of this research activity was to assess the suitability of computer-aided wet-spinning (CAWS) for AM of hyaluronic acid (HA)/chitosan (Cs) polyelectrolyte complex (PEC) hydrogels. A post-printing treatment based on HA chemical cross-linking via transesterification with poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was investigated to enhance the structural stability of the developed scaffolds in physiological conditions. PEC formation and the esterification reaction were investigated by infrared spectroscopy, thermogravimetric analysis, evolved gas analysis-mass spectrometry, and differential scanning calorimetry measurements. In addition, variation of PMVEMA concentration in the cross-linking medium was demonstrated to strongly influence scaffold water uptake and its stability in phosphate buffer saline at 37 °C. The in vitro cytocompatibility of the developed hydrogels was demonstrated by employing the murine embryo fibroblast Balb/3T3 clone A31 cell line, highlighting that PMVEMA cross-linking improved scaffold cell colonization. The results achieved demonstrated that the developed hydrogels represent suitable 3D scaffolds for long term cell culture experiments.
Subject(s)
Chitosan , Mice , Animals , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Tissue Engineering/methods , Cell Line , Tissue Scaffolds/chemistryABSTRACT
Chitosan chemical functionalization is a powerful tool to provide novel materials for additive manufacturing strategies. The main aim of this study was the employment of computer-aided wet spinning (CAWS) for the first time to design and fabricate carboxymethyl chitosan (CMCS) scaffolds. For this purpose, the synthesis of a chitosan derivative with a high degree of O-substitution (1.07) and water soluble in a large pH range allowed the fabrication of scaffolds with a 3D interconnected porous structure. In particular, the developed scaffolds were composed of CMCS fibers with a small diameter (< 60 µm) and a hollow structure due to a fast non solvent-induced coagulation. Zn2+ ionotropic crosslinking endowed the CMCS scaffolds with stability in aqueous solutions, pH-sensitive water uptake capability, and antimicrobial activity against Escherichia coli and Staphylococcus aureus. In addition, post-printing functionalization through collagen grafting resulted in a decreased stiffness (1.6 ± 0.3 kPa) and a higher elongation at break (101 ± 9 %) of CMCS scaffolds, as well as in their improved ability to support in vitro fibroblast viability and wound healing process. The obtained results encourage therefore further investigation of the developed scaffolds as antimicrobial wound dressing hydrogels for skin regeneration.
Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Escherichia coli , Staphylococcus aureus , Tissue Scaffolds , Wound Healing , Chitosan/chemistry , Chitosan/analogs & derivatives , Chitosan/pharmacology , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Wound Healing/drug effects , Tissue Scaffolds/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Mice , Fibroblasts/drug effects , Porosity , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Cross-Linking Reagents/chemistry , HumansABSTRACT
Flavonoids are natural compounds that are attracting great interest in the biomedical field thanks to the wide spectrum of their biological properties. Their employment as anticancer, anti-inflammatory, and antidiabetic drugs, as well as for many other pharmacological applications, is extensively investigated. One of the most successful ways to increase their therapeutic efficacy is to encapsulate them into a polymeric matrix in order to control their concentration in the physiological fluids for a prolonged time. The aim of this article is to provide an updated overview of scientific literature on the polymeric systems developed so far for the controlled release of flavonoids. The different classes of flavonoids are described together with the polymers most commonly employed for drug delivery applications. Representative drug delivery systems are discussed, highlighting the most common techniques for their preparation. The flavonoids investigated for polymer system encapsulation are then presented with their main source of extraction and biological properties. Relevant literature on their employment in this context is reviewed in relationship to the targeted pharmacological and biomedical applications.
ABSTRACT
Graphene oxide (GO) is a versatile material obtained by the strong oxidation of graphite. Among its peculiar properties, there is the outstanding ability to significantly alter the fluorescence of many common fluorophores and dyes. This property has been exploited in the design of novel switch-ON and switch-OFF fluorescence biosensing platforms for the detection of a plethora of biomolecules, especially pathological biomarkers and environmental contaminants. Currently, novel advanced strategies are being developed for therapeutic, diagnostic and theranostic approaches to widespread pathologies caused by viral or bacterial agents, as well as to cancer. This work illustrates an overview of the most recent applications of GO-based sensing systems relying on its fluorescence quenching effect.
ABSTRACT
Research on additive manufacturing (AM) of high-performance polymers provides novel materials and technologies for advanced applications in different sectors, such as aerospace and biomedical engineering. The present article is contextualized in this research trend by describing a novel AM protocol for processing a polysulfone (PSU)/N-methyl-2-pyrrolidone (NMP) solution into medical implant prototypes. In particular, an AM technique involving the patterned deposition of the PSU/NMP mixture in a coagulation bath was employed to fabricate PSU implants with different predefined shape, fiber diameter, and macropore size. Scanning electron microscopy (SEM) analysis highlighted a fiber transversal cross-section morphology characterized by a dense external skin layer and an inner macroporous/microporous structure, as a consequence of the nonsolvent-induced polymer solidification process. Physical-chemical and thermal characterization of the fabricated samples demonstrated that PSU processing did not affect its macromolecular structure and glass-transition temperature, as well as that after post-processing PSU implants did not contain residual solvent or nonsolvent. Mechanical characterization showed that the developed PSU scaffold tensile and compressive modulus could be changed by varying the macroporous architecture. In addition, PSU scaffolds supported the in vitro adhesion and proliferation of the BALB/3T3 clone A31 mouse embryo cell line. These findings encourage further research on the suitability of the developed processing method for the fabrication of customized PSU implants.
Subject(s)
Biomedical Engineering , Prostheses and Implants , Animals , Mice , Cell Line , PolymersABSTRACT
In the last two decades, the use of phthalates has been restricted worldwide due to their well-known toxicity. Nonetheless, phthalates are still widely used for their versatility, high plasticization effect, low cost, and lack of valuable alternatives. This study presents the fully bio-based and versatile glycerol trilevulinate plasticizer (GT) that was obtained by the valorization of glycerol and levulinic acid. The mild-conditions and solvent-free esterification used to synthesize GT was optimized by investigating the product by Fourier transform infrared and NMR spectroscopy. An increasing content of GT, from 10 to 40 parts by weight per hundred parts of resin (phr), was tested with poly(vinyl chloride), poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(lactic acid), and poly(caprolactone), which typically present complicated processability and/or mechanical properties. GT produced a significant plasticization effect on both amorphous and semicrystalline polymers, reducing their glass-transition temperature and stiffness, as observed by differential scanning calorimetry measurements and tensile tests. Remarkably, GT also decreased both the melting temperature and crystallinity degree of semicrystalline polymers. Furthermore, GT underwent enzyme-mediated hydrolysis to its initial constituents, envisioning a promising prospective for environmental safety and upcycling. Furthermore, 50% inhibitory concentration (IC50) tests, using mouse embryo fibroblasts, proved that GT is an unharmful alternative plasticizer, which makes it potentially applicable in the biomedical field.
ABSTRACT
Microglia chronic activation is a hallmark of several neurodegenerative diseases, including the retinal ones, possibly contributing to their etiopathogenesis. However, some microglia sub-populations have anti-inflammatory and neuroprotective functions, thus making arduous deciphering the role of these cells in neurodegeneration. Since it has been proposed that functionally different microglia subsets also rely on different metabolic routes, we hypothesized that modulating microglia metabolism might be a tool to enhance their anti-inflammatory features. This would have a preventive and therapeutic potential in counteracting neurodegenerative diseases. For this purpose, we tested various molecules known to act on cell metabolism, and we revealed the anti-inflammatory effect of the FDA-approved piperazine derivative Ranolazine on microglia cells, while confirming the one of the flavonoids Quercetin and Naringenin, both in vitro and in vivo. We also demonstrated the synergistic anti-inflammatory effect of Quercetin and Idebenone, and the ability of Ranolazine, Quercetin and Naringenin to counteract the neurotoxic effect of LPS-activated microglia on 661W neuronal cells. Overall, these data suggest that using the selected molecules -also in combination therapies- might represent a valuable approach to reduce inflammation and neurodegeneration while avoiding long term side effects of corticosteroids.
Subject(s)
Neurodegenerative Diseases , Neuroprotective Agents , Humans , Microglia/metabolism , Ranolazine/pharmacology , Ranolazine/therapeutic use , Quercetin/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Inflammation/pathology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Lipopolysaccharides/pharmacology , Neuroprotective Agents/therapeutic useABSTRACT
An Additive Manufacturing technique for the fabrication of three-dimensional polymeric scaffolds, based on wet-spinning of poly(ε-caprolactone) (PCL) or PCL/hydroxyapatite (HA) solutions, was developed. The processing conditions to fabricate scaffolds with a layer-by-layer approach were optimized by studying their influence on fibres morphology and alignment. Two different scaffold architectures were designed and fabricated by tuning inter-fibre distance and fibres staggering. The developed scaffolds showed good reproducibility of the internal architecture characterized by highly porous, aligned fibres with an average diameter in the range 200-250 µm. Mechanical characterization showed that the architecture and HA loading influenced the scaffold compressive modulus and strength. Cell culture experiments employing MC3T3-E1 preosteoblast cell line showed good cell adhesion, proliferation, alkaline phosphatase activity and bone mineralization on the developed scaffolds.
Subject(s)
Bone and Bones/chemistry , Polymers/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry , 3T3 Cells , Alkaline Phosphatase/metabolism , Animals , Anthraquinones/metabolism , Biocompatible Materials , Cell Adhesion , Cell Proliferation , Cell Survival , Durapatite/metabolism , Equipment Design/methods , Materials Testing , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Polyesters/metabolism , Porosity , Reproducibility of ResultsABSTRACT
Poly(lactide) (PLA) is one of the most investigated semicrystalline polymers for material extrusion (MEX) additive manufacturing (AM) techniques based on polymer melt processing. Research on its application for the development of customized devices tailored to specific anatomical parts of the human body can provide new personalized medicine strategies. This research activity was aimed at testing a new multifunctional AM system for the design and fabrication by MEX of anatomical and dog-bone-shaped PLA samples with different infill densities and deposition angles. In particular, a commercial PLA filament was employed to validate the computer-aided design (CAD) and manufacturing (CAM) process for the development of scaffold prototypes modeled on a human bone defect. Physical-chemical characterization of the obtained samples by 1H-NMR spectroscopy, size exclusion chromatography (SEC), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) demonstrated a small reduction of polymer molecular weight (~5%) due to thermal processing, as well as that the commercial polymer employed was a semicrystalline poly(d,l-lactide). Mechanical characterization highlighted the possibility of tuning elastic modulus and strength, as well as the elongation at break up to a 60% value by varying infill parameters.
ABSTRACT
With the increase of UV filters usage and consequent release into aquatic environments, the concerns about their potential ecological risks are also increasing. According to this, in the present study, adult polychaetes of the species Ficopomatus enigmaticus were chronically exposed to three concentrations (0.01, 0.1 and 0.5 mg/L) of organic and inorganic filters (Ethylhexyl methoxycinnamate (EHMC) and nanoparticulate Zinc oxide (nZnO), respectively) in order to analyse biochemical responses related to cellular damage, antioxidant defence, biotransformation mechanisms and, lastly, neurotoxicity. Despite major lipid peroxidation caused by EHMC was observed, both UV filters have produced the same response patterns. In details, a clear concentration-dependent activation of glutathione S-transferases and a significant decrease of acetylcholinesterase levels defined an important neurotoxic effect was observed for both contaminants. These results become important to expand the limited scientific literature on biochemical responses of marine and brackish water invertebrates to organic and inorganic UV filters.