Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Microb Ecol ; 87(1): 66, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700528

ABSTRACT

Despite the importance of wood-inhabiting fungi on nutrient cycling and ecosystem functions, their ecology, especially related to their community assembly, is still highly unexplored. In this study, we analyzed the wood-inhabiting fungal richness, community composition, and phylogenetics using PacBio sequencing. Opposite to what has been expected that deterministic processes especially environmental filtering through wood-physicochemical properties controls the community assembly of wood-inhabiting fungal communities, here we showed that both deterministic and stochastic processes can highly contribute to the community assembly processes of wood-inhabiting fungi in this tropical forest. We demonstrated that the dynamics of stochastic and deterministic processes varied with wood decomposition stages. The initial stage was mainly governed by a deterministic process (homogenous selection), whereas the early and later decomposition stages were governed by the stochastic processes (ecological drift). Deterministic processes were highly contributed by wood physicochemical properties (especially macronutrients and hemicellulose) rather than soil physicochemical factors. We elucidated that fine-scale fungal-fungal interactions, especially the network topology, modularity, and keystone taxa of wood-inhabiting fungal communities, strongly differed in an initial and decomposing deadwood. This current study contributes to a better understanding of the ecological processes of wood-inhabiting fungi in tropical regions where the knowledge of wood-inhabiting fungi is highly limited.


Subject(s)
Forests , Fungi , Mycobiome , Wood , Wood/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Tropical Climate , Phylogeny , High-Throughput Nucleotide Sequencing , Biodiversity
2.
BMC Plant Biol ; 23(1): 83, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36750810

ABSTRACT

BACKGROUND: Nonstructural carbohydrates (NSCs) reflect the carbon supply status and affect the construction and development of plants. Previous studies have focused on the dynamics of NSCs among plant organs, however, few studies have paid attention to the synergistic variations between fine root traits and NSCs under drought based on the perspective of branch order roots. This study aims to explore the responses of fine root traits and NSCs among root orders of Juglans mandshurica seedlings under different drought intensities and soil substrates. The 2-year-old J. mandshurica potted seedlings were planted in three different soil substrates (humus, loam and sandy-loam soil) and subjected to four drought intensities (CK, mild drought T1, moderate drought T2 and severe drought T3) for 60 days. RESULTS: The root biomass of seedlings in sandy-loam soil under the same drought intensity was higher than that of seedlings in humus soil. With an increase in drought, the root biomass, average diameter, root tissue density and cortex thickness decreased significantly, and the specific root length, stele diameter and conduit density increased. The root NSC contents in humus soil were higher than those in sandy-loam soil. The fine root soluble sugar content in all soil substrates decreased with increasing drought intensity, while the root starch and total NSC contents varied among the different soil substrates. Compared with transportive roots, the morphological and anatomical traits jointly explained the higher variation in NSC contents of the absorptive roots. The anatomical traits explained the higher variation in the NSC content of first five order roots. CONCLUSION: Our results suggest that coordinated adaptation of the root traits and NSCs of Manchurian walnut seedlings exposed to water gradients in different soil substrates.


Subject(s)
Juglans , Seedlings , Soil/chemistry , Plant Roots , Droughts , Carbohydrates , Sand
3.
Microb Ecol ; 85(2): 411-428, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35124727

ABSTRACT

Recently, a new annotation tool "FungalTraits" was created based on the previous FUNGuild and FunFun databases, which has attracted high attention in the scientific community. These databases were widely used to gain more information from fungal sequencing datasets by assigning fungal functional traits. More than 1500 publications so far employed FUNGuild and the aim of this study is to compare this successful database with the recent FungalTraits database. Quality and quantity of the assignment by FUNGuild and FungalTraits to a fungal internal transcribed spacer (ITS)-based amplicon sequencing dataset on amplicon sequence variants (ASVs) were addressed. Sequencing dataset was derived from leaves and needles of 12 temperate broadleaved and coniferous tree species. We found that FungalTraits assigned more functional traits than FUNGuild, and especially the coverage of saprotrophs, plant pathogens, and endophytes was higher while lichenized fungi revealed similar findings. Moreover, ASVs derived from leaves and needles of each tree species were better assigned to all available fungal traits as well as to saprotrophs by FungalTraits compared to FUNGuild in particular for broadleaved tree species. Assigned ASV richness as well as fungal functional community composition was higher and more diverse after analyses with FungalTraits compared to FUNGuild. Moreover, datasets of both databases showed similar effect of environmental factors for saprotrophs but for endophytes, unidentical patterns of significant corresponding factors were obtained. As a conclusion, FungalTraits is superior to FUNGuild in assigning a higher quantity and quality of ASVs as well as a higher frequency of significant correlations with environmental factors.


Subject(s)
Mycobiome , Trees , Trees/microbiology , Fungi , Plant Leaves/microbiology
4.
Proc Biol Sci ; 289(1974): 20220130, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35538788

ABSTRACT

Microbial community members are the primary microbial colonizers and active decomposers of deadwood. This study placed sterilized standardized beech and spruce sapwood specimens on the forest ground of 8 beech- and 8 spruce-dominated forest sites. After 370 days, specimens were assessed for mass loss, nitrogen (N) content and 15N isotopic signature, hydrolytic and lignin-modifying enzyme activities. Each specimen was incubated with bromodeoxyuridine (BrdU) to label metabolically active fungal and bacterial community members, which were assessed using amplicon sequencing. Fungal saprotrophs colonized the deadwood accompanied by a distinct bacterial community that was capable of cellulose degradation, aromatic depolymerization, and N2 fixation. The latter were governed by the genus Sphingomonas, which was co-present with the majority of saprotrophic fungi regardless of whether beech or spruce specimens were decayed. Moreover, the richness of the diazotrophic Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium group was significantly correlated with mass loss, N content and 15N isotopic signature. By contrast, presence of obligate predator Bdellovibrio spp. shifted bacterial community composition and were linked to decreased beech deadwood decay rates. Our study provides the first account of the composition and function of metabolically active wood-colonizing bacterial and fungal communities, highlighting cross-kingdom interactions during the early and intermediate stages of wood decay.


Subject(s)
Microbiota , Picea , Bacteria , Forests , Fungi , Picea/microbiology , Wood/microbiology
5.
Microb Ecol ; 84(1): 90-105, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34487212

ABSTRACT

Even though it is widely acknowledged that litter decomposition can be impacted by climate change, the functional roles of microbes involved in the decomposition and their answer to climate change are less understood. This study used a field experimental facility settled in Central Germany to analyze the effects of ambient vs. future climate that is expected in 50-80 years on mass loss and physicochemical parameters of wheat litter in agricultural cropland at the early phase of litter decomposition process. Additionally, the effects of climate change were assessed on microbial richness, community compositions, interactions, and their functions (production of extracellular enzymes), as well as litter physicochemical factors shaping their colonization. The initial physicochemical properties of wheat litter did not change between both climate conditions; however, future climate significantly accelerated litter mass loss as compared with ambient one. Using MiSeq Illumina sequencing, we found that future climate significantly increased fungal richness and altered fungal communities over time, while bacterial communities were more resistant in wheat residues. Changes on fungal richness and/or community composition corresponded to different physicochemical factors of litter under ambient (Ca2+, and pH) and future (C/N, N, P, K+, Ca2+, pH, and moisture) climate conditions. Moreover, highly correlative interactions between richness of bacteria and fungi were detected under future climate. Furthermore, the co-occurrence networks patterns among dominant microorganisms inhabiting wheat residues were strongly distinct between future and ambient climates. Activities of microbial ß-glucosidase and N-acetylglucosaminidase in wheat litter were increased over time. Such increased enzymatic activities were coupled with a significant positive correlation between microbial (both bacteria and fungi) richness and community compositions with these two enzymatic activities only under future climate. Overall, we provide evidence that future climate significantly impacted the early phase of wheat litter decomposition through direct effects on fungal communities and through indirect effects on microbial interactions as well as corresponding enzyme production.


Subject(s)
Microbiota , Triticum , Bacteria/genetics , Ecosystem , Fungi/genetics , Plant Leaves/microbiology
6.
Environ Microbiol ; 23(10): 6163-6176, 2021 10.
Article in English | MEDLINE | ID: mdl-33780112

ABSTRACT

Climate and agricultural practice interact to influence both crop production and soil microbes in agroecosystems. Here, we carried out a unique experiment in Central Germany to simultaneously investigate the effects of climates (ambient climate vs. future climate expected in 50-70 years), agricultural practices (conventional vs. organic farming), and their interaction on arbuscular mycorrhizal fungi (AMF) inside wheat (Triticum aestivum L.) roots. AMF communities were characterized using Illumina sequencing of 18S rRNA gene amplicons. We showed that climatic conditions and agricultural practices significantly altered total AMF community composition. Conventional farming significantly affected the AMF community and caused a decline in AMF richness. Factors shaping AMF community composition and richness at family level differed greatly among Glomeraceae, Gigasporaceae and Diversisporaceae. An interactive impact of climate and agricultural practices was detected in the community composition of Diversisporaceae. Organic farming mitigated the negative effect of future climate and promoted total AMF and Gigasporaceae richness. AMF richness was significantly linked with nutrient content of wheat grains under both agricultural practices.


Subject(s)
Mycorrhizae , Soil , Mycorrhizae/genetics , Organic Agriculture , Plant Roots/microbiology , Soil Microbiology , Symbiosis
7.
Environ Sci Technol ; 55(18): 12337-12351, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34486373

ABSTRACT

Decomposition by microorganisms of plastics in soils is almost unexplored despite the fact that the majority of plastics released into the environment end up in soils. Here, we investigate the decomposition process and microbiome of one of the most promising biobased and biodegradable plastics, poly(butylene succinate-co-adipate) (PBSA), under field soil conditions under both ambient and future predicted climates (for the time between 2070 and 2100). We show that the gravimetric and molar mass of PBSA is already largely reduced (28-33%) after 328 days under both climates. We provide novel information on the PBSA microbiome encompassing the three domains of life: Archaea, Bacteria, and Eukarya (fungi). We show that PBSA begins to decompose after the increase in relative abundances of aquatic fungi (Tetracladium spp.) and nitrogen-fixing bacteria. The PBSA microbiome is distinct from that of surrounding soils, suggesting that PBSA serves as a new ecological habitat. We conclude that the microbial decomposition process of PBSA in soil is more complex than previously thought by involving interkingdom relationships, especially between bacteria and fungi.


Subject(s)
Ascomycota , Biodegradable Plastics , Microbiota , Biodegradation, Environmental , Soil , Soil Microbiology
8.
Microb Ecol ; 78(3): 725-736, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30761423

ABSTRACT

The home-field advantage (HFA) hypothesis has been used intensively to study leaf litter decomposition in various ecosystems. However, the HFA in woody substrates is still unexplored. Here, we reanalyzed and integrated existing datasets on various groups of microorganisms collected from natural deadwood of two temperate trees, Fagus sylvatica and Picea abies, from forests in which one or other of these species dominates but where both are present. Our aims were (i) to test the HFA hypothesis on wood decomposition rates of these two temperate tree species, and (ii) to investigate if HFA hypothesis can be explained by diversity and community composition of bacteria and in detail N-fixing bacteria (as determined by molecular 16S rRNA and nifH gene amplification) and fungi (as determined by molecular ITS rRNA amplification and sporocarp surveys). Our results showed that wood decomposition rates were accelerated at "home" versus "away" by 38.19% ± 20.04% (mean ± SE). We detected strong changes in fungal richness (increase 36-50%) and community composition (RANOSIM = 0.52-0.60, P < 0.05) according to HFA hypothesis. The changes of fungi were much stronger than for total bacteria and nitrogen fixing for both at richness and community composition levels. In conclusion, our results support the HFA hypothesis in deadwood: decomposition rate is accelerated at home due to specialization of fungal communities produced by the plant community above them. Furthermore, the higher richness of fungal sporocarps and nitrogen-fixing bacteria (nifH) may stimulate or at least stabilize wood decomposition rates at "home" versus "away."


Subject(s)
Fagus/microbiology , Fungi/isolation & purification , Fungi/metabolism , Mycobiome , Picea/microbiology , Wood/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biodegradation, Environmental , DNA, Fungal/genetics , Fungi/classification , Fungi/genetics , Nitrogen/metabolism , RNA, Ribosomal, 16S/genetics , Trees/microbiology
9.
Conserv Biol ; 33(3): 716-724, 2019 06.
Article in English | MEDLINE | ID: mdl-30350883

ABSTRACT

Next-generation sequencing (NGS) has significantly increased knowledge of microbial communities and their distribution. However, it is still not common to apply NGS technology to microbial conservation. We sought to use NGS technologies to evaluate conservation strategies for wood-inhabiting fungi. Evaluating a deadwood experiment 3 years after it was established, we specifically examined which tree species combinations promoted the highest richness of wood-inhabiting fungi. Deadwood enrichment was an effective strategy and logs of 6 tree species, either those with the highest wood-inhabiting fungal α and γ diversity or those with the highest ß diversity, maintained >1,000 operational taxonomic units (OTUs) spread over a wide range of taxonomic groups. In comparison, a conservation strategy based only on the results of sporocarp surveys yielded 591 OTUs. This result highlights the need to use NGS approaches to inform microbial conservation strategies. We also determined that 5 tree species with the highest saproxylic beetle γ diversity simultaneously conserved wood-inhabiting fungi. Apart from deadwood volume, we suggest data on deadwood quality and species also be included as indicators, especially for wood-inhabiting fungal diversity, and incorporated quickly in forest assessment and monitoring systems in Central Europe.


Aplicación de Tecnologías de Secuenciación de Nueva Generación a la Conservación de Hongos Habitantes de Madera Resumen La secuenciación de nueva generación (NGS, en inglés) ha incrementado significativamente el conocimiento que tenemos de las comunidades microbianas y su distribución. Sin embargo, aún no es común aplicar la tecnología NGS a la conservación de microbios. Buscamos usar estas tecnologías para evaluar las estrategias de conservación que hay para los hongos que habitan la madera. Durante la evaluación de un experimento con madera muerta tres años después de que fue establecido, examinamos específicamente cuáles combinaciones de especies de árbol promovían la mayor riqueza de hongos que habitan la madera. El enriquecimiento de madera muerta fue una estrategia efectiva y los troncos de seis especies de árboles, ya fueran aquellas con la diversidad α y la γ más altas de hongos habitantes de madera o aquellas con la diversidad ß más alta, mantuvieron a >1000 unidades taxonómicas operativas (OTUs, en inglés) distribuidas en una gama amplia de grupos taxonómicos. En comparación, una estrategia de conservación basada sólo en los resultados de los censos de esporocarpos dio como resultado 591 OTUs. Este resultado resalta la necesidad de utilizar estrategias de NGS para informar a las estrategias de conservación de microbios. También determinamos que cinco especies de árboles con la diversidad γ más alta de escarabajos saproxílicos conservaron simultáneamente a los hongos que habitan la madera. Además del volumen de madera muerta, sugerimos que también se incluyan como indicadores los datos sobre la calidad de la madera muerta y las especies, especialmente para la diversidad de hongos que habitan la madera, y que se incorpore rápidamente a los sistemas de evaluación y monitoreo de bosques en Europa central.


Subject(s)
Biodiversity , Wood , Animals , Conservation of Natural Resources , Europe , Fungi , High-Throughput Nucleotide Sequencing , Trees
10.
Environ Microbiol ; 20(5): 1693-1710, 2018 05.
Article in English | MEDLINE | ID: mdl-29473288

ABSTRACT

Nitrogen deposition can strongly affect biodiversity, but its specific effects on terrestrial microbial communities and their roles for ecosystem functions and processes are still unclear. Here, we investigated the impacts of N deposition on wood-inhabiting fungi (WIF) and their related ecological functions and processes in a highly N-limited deadwood habitat. Based on high-throughput sequencing, enzymatic activity assay and measurements of wood decomposition rates, we show that N addition has no significant effect on the overall WIF community composition or on related ecosystem functions and processes in this habitat. Nevertheless, we detected several switches in presence/absence (gain/loss) of wood-inhabiting fungal OTUs due to the effect of N addition. The responses of WIF differed from previous studies carried out with fungi living in soil and leaf-litter, which represent less N-limited fungal habitats. Our results suggest that adaptation at different levels of organization and functional redundancy may explain this buffered response and the resistant microbial-mediated ecosystem function and processes against N deposition in highly N-limited habitats.


Subject(s)
Biodiversity , Fungi/drug effects , Fungi/physiology , Mycobiome , Nitrogen/pharmacology , Wood/microbiology , Acclimatization , Fungi/classification , Microbiota , Nitrogen/analysis , Plant Leaves/microbiology , Soil Microbiology
11.
BMC Ecol ; 18(1): 58, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30558598

ABSTRACT

BACKGROUND: Land use changes and related land management practices significantly alter soil physicochemical properties; however, their effects on the soil microbial community structure are still unclear. In this study, we used automated ribosomal intergenic spacer analysis to determine the fungal and bacterial community composition in soils from different land use areas in the Ethiopian highlands. Soil samples were collected from five areas with different land uses, natural forest, eucalyptus plantation, exclosure, grassland and cropland, which had all historically been natural forest. RESULTS: Our results showed a significant shift in the soil bacterial and fungal community composition in response to land use change. We also identified soil physicochemical factors corresponding to the changes in bacterial and fungal communities. Although most soil attributes, including soil organic carbon, total soil nitrogen, labile P, soil pH and soil aggregate stability, were related to the change in bacterial community composition, the total soil nitrogen and soil organic carbon had the strongest relationships. The change in fungal community composition was correlated with soil nutrients, organic carbon, soil nitrogen and particularly the labile P concentration. CONCLUSIONS: The fungal community composition was likely affected by the alteration of vegetation cover in response to land use change, whereas the bacterial communities were mainly sensitive to changes in soil attributes. The study highlights the higher sensitivity of fungal communities than bacterial communities to land use changes.


Subject(s)
Farms , Forests , Microbiota , Soil Microbiology , Agriculture , Bacteria/classification , Ethiopia , Fungi/classification
12.
Mol Ecol ; 25(16): 4059-74, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27357176

ABSTRACT

Microorganisms play a crucial role in the biological decomposition of plant litter in terrestrial ecosystems. Due to the permanently changing litter quality during decomposition, studies of both fungi and bacteria at a fine taxonomic resolution are required during the whole process. Here we investigated microbial community succession in decomposing leaf litter of temperate beech forest using pyrotag sequencing of the bacterial 16S and the fungal internal transcribed spacer (ITS) rRNA genes. Our results reveal that both communities underwent rapid changes. Proteobacteria, Actinobacteria and Bacteroidetes dominated over the entire study period, but their taxonomic composition and abundances changed markedly among sampling dates. The fungal community also changed dynamically as decomposition progressed, with ascomycete fungi being increasingly replaced by basidiomycetes. We found a consistent and highly significant correlation between bacterial richness and fungal richness (R = 0.76, P < 0.001) and community structure (RM antel  = 0.85, P < 0.001), providing evidence of coupled dynamics in the fungal and bacterial communities. A network analysis highlighted nonrandom co-occurrences among bacterial and fungal taxa as well as a shift in the cross-kingdom co-occurrence pattern of their communities from the early to the later stages of decomposition. During this process, macronutrients, micronutrients, C:N ratio and pH were significantly correlated with the fungal and bacterial communities, while bacterial richness positively correlated with three hydrolytic enzymes important for C, N and P acquisition. Overall, we provide evidence that the complex litter decay is the result of a dynamic cross-kingdom functional succession.


Subject(s)
Bacteria/classification , Forests , Fungi/classification , Plant Leaves/microbiology , Soil Microbiology , DNA, Ribosomal Spacer/genetics , RNA, Ribosomal, 16S/genetics
13.
Microb Ecol ; 69(4): 905-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25749938

ABSTRACT

Forest management practices (FMPs) significantly influence important ecological processes and services in Central European forests, such as leaf litter decomposition and nutrient cycling. Changes in leaf litter diversity, and thus, its quality as well as microbial community structure and function induced by different FMPs were hypothesized to be the main drivers causing shifts in decomposition rates and nutrient release in managed forests. In a litterbag experiment lasting 473 days, we aimed to investigate the effects of FMPs (even-aged timber management, selective logging and unmanaged) on bacterial and fungal communities involved in leaf litter degradation over time. Our results showed that microbial communities in leaf litter were strongly influenced by both FMPs and sampling date. The results from nonmetric multidimensional scaling (NMDS) ordination revealed distinct patterns of bacterial and fungal successions over time in leaf litter. We demonstrated that FMPs and sampling dates can influence a range of factors, including leaf litter quality, microbial macronutrients, and pH, which significantly correlate with microbial community successions.


Subject(s)
Bacteria/genetics , Forestry/methods , Forests , Fungi/genetics , Plant Leaves/chemistry , Soil Microbiology , Bacteria/metabolism , DNA, Intergenic/genetics , DNA, Intergenic/metabolism , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal Spacer/metabolism , Fungi/metabolism , Germany
14.
J Environ Manage ; 139: 109-19, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24681650

ABSTRACT

The impact of changes within a single land-use category or land-use intensity on microbial communities is poorly understood, especially with respect to fungi. Here we assessed how forest management regimes and a change in forest type affect the richness and community structure of wood-inhabiting fungi across Germany. We used molecular methods based on the length polymorphism of the internal transcribed spacers and the 5.8S rRNA gene to assess fungal operational taxonomic units (OTUs). A cloning/sequencing approach was used to identify taxonomic affinities of the fungal OTUs. Overall, 20-24% and 25-27% of native fungal OTUs from forest reserves and semi-natural forests became undetectable or were lost in managed and converted forests, respectively. Fungal richness was significantly reduced during a regeneration phase in age-class beech forests with a high level of wood extraction (P = 0.017), whereas fungal community structures were not significantly affected. Conversion of forests from native, deciduous to coniferous species caused significant changes in the fungal community structure (R = 0.64-0.66, P = 0.0001) and could reduce fungal richness (P < 0.05) which may depend on which coniferous species was introduced. Our results showed that Ascocoryne cylichnium, Armillaria sp., Exophiala moniliae, Hyphodontia subalutacea and Fomes fomentarius, all known for wood-decaying abilities were strongly reduced in their abundances when forests were converted from beech to coniferous. We conclude that changes within a single land-use category can be regarded as a major threat to fungal diversity in temperate forest ecosystems.


Subject(s)
Fungi/classification , Wood/microbiology , Biodiversity , Forestry/methods , Forests , Fungi/genetics , Germany , RNA, Fungal , RNA, Ribosomal
15.
Sci Total Environ ; 912: 168689, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000743

ABSTRACT

Combinations of biocides are commonly added to building materials to prevent microbial growth and thereby cause degradation of the façades. These biocides reach the environment by leaching from façades posing an environmental risk. Although ecotoxicity to the aquatic habitat is well established, there is hardly any data on the ecotoxicological effects of biocides on the soil habitat. This study aimed to characterize the effect of the biocides terbutryn, isoproturon, octhilinone, and combinations thereof on the total and metabolically active soil microbial community composition and functions. Total soil microbial community was retrieved directly from the nucleic acid extracts, while the DNA of the active soil microbial community was separated after bromodeoxyuridine labeling. Bacterial 16S rRNA gene and fungal internal transcribed spacer region gene-based amplicon sequencing was carried out for both active and total, while gene copy numbers were quantified only for the total soil microbial community. Additionally, soil respiration and physico-chemical parameters were analyzed to investigate overall soil microbial activity. The bacterial and fungal gene copy numbers were significantly affected by single biocides and combined biocide soil treatment but not soil respiration and physico-chemical parameters. While the total soil microbiome experienced only minor effects from single and combined biocide treatment, the active soil microbiome was significantly impacted in its diversity, richness, composition, and functional patterns. The active bacterial richness was more sensitive than fungal richness. However, the adverse effects of the biocide combination treatments on soil bacterial richness were highly dependent on the identities of the biocide combination. Our results demonstrate that the presence of biocides frequently used in building materials affects the active soil microbiome. Thereby, the approach described herein can be used as an ecotoxicological measure for the effect on complex soil environments in future studies.


Subject(s)
Disinfectants , Microbiota , Disinfectants/analysis , Soil Microbiology , Soil , RNA, Ribosomal, 16S/genetics , Construction Materials , Cell Proliferation
16.
Polymers (Basel) ; 15(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36771962

ABSTRACT

Expanding the use of environmentally friendly materials to protect the environment is one of the key factors in maintaining a sustainable ecological balance. Poly(butylene succinate-co-adipate) (PBSA) is considered among the most promising bio-based and biodegradable plastics for the future with a high number of applications in soil and agriculture. Therefore, the decomposition process of PBSA and its consequences for the carbon stored in soil require careful monitoring. For the first time, the stable isotope technique was applied in the current study to partitioning plastic- and soil-originated C in the CO2 released during 80 days of PBSA decomposition in a Haplic Chernozem soil as dependent on nitrogen availability. The decomposition of the plastic was accompanied by the C loss from soil organic matter (SOM) through priming, which in turn was dependent on added N. Nitrogen facilitated PBSA decomposition and reduced the priming effect during the first 6 weeks of the experiment. During the 80 days of plastic decomposition, 30% and 49% of the released CO2 were PBSA-derived, while the amount of SOM-derived CO2 exceeded the corresponding controls by 100.2 and 132.3% in PBSA-amended soil without and with N fertilization, respectively. Finally, only 4.1% and 5.4% of the PBSA added into the soil was mineralized to CO2, in the treatments without and with N amendment, respectively.

17.
PLoS One ; 18(3): e0280075, 2023.
Article in English | MEDLINE | ID: mdl-36857385

ABSTRACT

Stingless bees play a crucial role in the environment and agriculture as they are effective pollinators. Furthermore, they can produce various products that can be exploited economically, such as propolis and honey. Despite their economic value, the knowledge of microbial community of stingless bees, and their roles on the bees' health, especially in Thailand, are in its infancy. This study aimed to investigate the composition and the functions of bacterial community associated with Tetragonula pagdeni stingless bees using culture-independent and culture-dependent approaches with emphasis on lactic acid bacteria. The culture-independent results showed that the dominant bacterial phyla were Firmicutes, Proteobacteria and Actinobacteria. The most abundant families were Lactobacillaceae and Halomonadaceae. Functional prediction indicated that the prevalent functions of bacterial communities were chemoheterotrophy and fermentation. In addition, the bacterial community might be able to biosynthesize amino acid and antimicrobial compounds. Further isolation and characterization resulted in isolates that belonged to the dominant taxa of the community and possessed potentially beneficial metabolic activity. This suggested that they are parts of the nutrient acquisition and host defense bacterial functional groups in Thai commercial stingless bees.


Subject(s)
Bees , Lactobacillales , Microbiota , Animals , Bacteria , Bees/microbiology , Thailand
18.
ISME J ; 17(2): 238-251, 2023 02.
Article in English | MEDLINE | ID: mdl-36352255

ABSTRACT

Although microbial decomposition of plant litter plays a crucial role in nutrient cycling and soil fertility, we know less about likely links of specific microbial traits and decomposition, especially in relation to climate change. We study here wheat straw decomposition under ambient and manipulated conditions simulating a future climate scenario (next 80 years) in agroecosystems, including decay rates, macronutrient dynamics, enzyme activity, and microbial communities. We show that future climate will accelerate straw decay rates only during the early phase of the decomposition process. Additionally, the projected climate change will increase the relative abundance of saprotrophic fungi in decomposing wheat straw. Moreover, the impact of future climate on microbial community assembly and molecular ecological networks of both bacteria and fungi will strongly depend on the decomposition phase. During the early phase of straw decomposition, stochastic processes dominated microbial assembly under ambient climate conditions, whereas deterministic processes highly dominated bacterial and fungal communities under simulated future climate conditions. In the later decomposition phase, similar assembly processes shaped the microbial communities under both climate scenarios. Furthermore, over the early phases of decomposition, simulated future climate enhanced the complexity of microbial interaction networks. We concluded that the impact of future climate on straw decay rate and associated microbial traits like assembly processes and inter-community interactions is restricted to the early phase of decomposition.


Subject(s)
Microbiota , Triticum , Bacteria/genetics , Soil , Fungi/genetics , Soil Microbiology , Ecosystem
19.
Front Microbiol ; 14: 1220901, 2023.
Article in English | MEDLINE | ID: mdl-37779706

ABSTRACT

Diverse microorganisms from the three domains of life (Archaea, Bacteria, and Eukaryota) cause deterioration in mural paintings worldwide; however, few studies have simultaneously targeted these three domains. This study aims to survey the microbiome and its potential for biodeterioration on unpreserved Lan Na mural paintings in Sean Khan temple, Chiang Mai, Thailand. The overview of the archaeal, bacterial, and fungal communities was reported by Illumina sequencing, whereas the potential for deterioration was revealed by culturable techniques and a literature search. The abundant microbes reported in this study were also found in other ancient mural paintings worldwide. Halococcus, a salt-tolerant archaeon, as well as the eubacterial genus Crossiella dominated the prokaryotic community. On the other hand, the main fungal group was the genus Candida (Ascomycota). However, a low number of fungi and bacteria were isolated. Most of the isolates showed the ability to survive in the drought conditions of mural paintings but could not perform discoloration activities. The deterioration activity mainly affected calcium compounds, which are the main components of painting substrates. Aspergillus and several bacterial isolates could dissolve calcium compounds, but only Trichaptum species could induce crystal formation. These results suggest that deterioration of painting substrate should be taken into consideration in addition to deterioration of color in mural paintings. For the Lan Na painting in Sean Khan temple, the plaster is the prime target for biodeterioration, and thus we suggest that the preservation effort should focus on this component of the mural painting.

20.
Sci Total Environ ; 900: 165868, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37516186

ABSTRACT

Enhanced nitrogen (N) deposition due to combustion of fossil fuels and agricultural fertilization is a global phenomenon which has severely altered carbon (C) and N cycling in temperate forest ecosystems in the northern hemisphere. Although deadwood holds a substantial amount of C in forest ecosystems and thus plays a crucial role in nutrient cycling, the effect of increased N deposition on microbial processes and communities, wood chemical traits and deadwood mass loss remains unclear. Here, we simulated high N deposition rates by adding reactive N in form of ammonium-nitrate (40 kg N ha-1 yr-1) to deadwood of 13 temperate tree species over nine years in a field experiment in Germany. Non-treated deadwood from the same logs served as control with background N deposition. Our results show that chronically elevated N levels alters deadwood mass loss alongside respiration, enzymatic activities and wood chemistry depending on tree clade and species. In gymnosperm deadwood, elevated N increased mass loss by +38 %, respiration by +37 % and increased laccase activity 12-fold alongside increases of white-rot fungal abundance +89 % (p = 0.03). Furthermore, we observed marginally significant (p = 0.06) shifts of bacterial communities in gymnosperm deadwood. In angiosperm deadwood, we did not detect consistent effects on mass loss, physico-chemical properties, extracellular enzymatic activity or changes in microbial communities except for changes in abundance of 10 fungal OTUs in seven tree species and 28 bacterial OTUs in 10 tree species. We conclude that N deposition alters decomposition processes exclusively in N limited gymnosperm deadwood in the long term by enhancing fungal activity as expressed by increases in respiration rate and extracellular enzyme activity with minor shifts in decomposing microbial communities. By contrast, deadwood of angiosperm tree species had higher N concentrations and mass loss as well as community composition did not respond to N addition.


Subject(s)
Magnoliopsida , Microbiota , Fungi , Nitrogen/analysis , Cycadopsida , Forests , Trees/microbiology , Bacteria , Soil Microbiology , Soil
SELECTION OF CITATIONS
SEARCH DETAIL