Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31256876

ABSTRACT

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Subject(s)
Craniofacial Abnormalities/etiology , Glycosylphosphatidylinositols/biosynthesis , Glycosylphosphatidylinositols/deficiency , Hand Deformities, Congenital/etiology , Hearing Loss, Sensorineural/etiology , Intellectual Disability/etiology , Mannosyltransferases/genetics , Metabolic Diseases/etiology , Mutation , Nails, Malformed/etiology , Peripheral Nervous System Diseases/etiology , Seizures/pathology , Adult , Child , Child, Preschool , Craniofacial Abnormalities/pathology , Female , Glycosylphosphatidylinositols/genetics , Hand Deformities, Congenital/pathology , Hearing Loss, Sensorineural/pathology , Humans , Infant , Infant, Newborn , Intellectual Disability/pathology , Male , Metabolic Diseases/pathology , Nails, Malformed/pathology , Pedigree , Peripheral Nervous System Diseases/pathology , Seizures/genetics , Severity of Illness Index , Young Adult
2.
BMC Med Genet ; 21(1): 216, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33138774

ABSTRACT

BACKGROUND: To determine the carrier frequency and pathogenic variants of common genetic disorders in the north Indian population by using next generation sequencing (NGS). METHODS: After pre-test counselling, 200 unrelated individuals (including 88 couples) were screened for pathogenic variants in 88 genes by NGS technology. The variants were classified as per American College of Medical Genetics criteria. Pathogenic and likely pathogenic variants were subjected to thorough literature-based curation in addition to the regular filters. Variants of unknown significance were not reported. Individuals were counselled explaining the implications of the results, and cascade screening was advised when necessary. RESULTS: Of the 200 participants, 52 (26%) were found to be carrier of one or more disorders. Twelve individuals were identified to be carriers for congenital deafness, giving a carrier frequency of one in 17 for one of the four genes tested (SLC26A4, GJB2, TMPRSS3 and TMC1 in decreasing order). Nine individuals were observed to be carriers for cystic fibrosis, with a frequency of one in 22. Three individuals were detected to be carriers for Pompe disease (frequency one in 67). None of the 88 couples screened were found to be carriers for the same disorder. The pathogenic variants observed in many disorders (such as deafness, cystic fibrosis, Pompe disease, Canavan disease, primary hyperoxaluria, junctional epidermolysis bullosa, galactosemia, medium chain acyl CoA deficiency etc.) were different from those commonly observed in the West. CONCLUSION: A higher carrier frequency for genetic deafness, cystic fibrosis and Pompe disease was unexpected, and contrary to the generally held view about their prevalence in Asian Indians. In spite of the small sample size, this study would suggest that population-based carrier screening panels for India would differ from those in the West, and need to be selected with due care. Testing should comprise the study of all the coding exons with its boundaries in the genes through NGS, as all the variants are not well characterized. Only study of entire coding regions in the genes will detect carriers with adequate efficiency, in order to reduce the burden of genetic disorders in India and other resource poor countries.


Subject(s)
Acyl-CoA Dehydrogenase/deficiency , Canavan Disease/genetics , Cystic Fibrosis/genetics , Epidermolysis Bullosa, Junctional/genetics , Galactosemias/genetics , Glycogen Storage Disease Type II/genetics , Hearing Loss, Sensorineural/genetics , Hyperoxaluria, Primary/genetics , Lipid Metabolism, Inborn Errors/genetics , Acyl-CoA Dehydrogenase/genetics , Adult , Canavan Disease/epidemiology , Connexin 26 , Connexins/genetics , Cystic Fibrosis/epidemiology , Epidermolysis Bullosa, Junctional/epidemiology , Female , Galactosemias/epidemiology , Gene Expression , Genetic Carrier Screening/statistics & numerical data , Genetic Counseling , Glycogen Storage Disease Type II/epidemiology , Hearing Loss, Sensorineural/epidemiology , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Hyperoxaluria, Primary/epidemiology , India/epidemiology , Lipid Metabolism, Inborn Errors/epidemiology , Male , Membrane Proteins/genetics , Middle Aged , Mutation , Neoplasm Proteins/genetics , Serine Endopeptidases/genetics , Sulfate Transporters/genetics
3.
J Pediatr ; 216: 44-50.e5, 2020 01.
Article in English | MEDLINE | ID: mdl-31606152

ABSTRACT

OBJECTIVES: To evaluate the clinical and molecular spectrum, and factors affecting clinical outcome of patients in India diagnosed with infantile-onset Pompe disease (IOPD). STUDY DESIGN: In this multicenter, cross-sectional study, we evaluated the records of 77 patients with IOPD to analyze their clinical course, outcomes, and factors influencing the outcomes. RESULTS: Of the 77 patients with IOPD, phenotype data were available in 59; 46 (78%) had the classic phenotype. Overall, 58 of 77 (75%) and 19 of 77 (25%) patients were symptomatic before and after age 6 months, respectively. Alpha-glucosidase gene variant analysis available for 48 patients (96 alleles) showed missense variants in 49 alleles. Cross-reactive immunologic material (CRIM) status could be determined or predicted in 44 of 48 patients. In total, 32 of 44 patients (72%) were CRIM-positive, and 12 of 44 patients (27%) were CRIM-negative. Thirty-nine cases received enzyme-replacement therapy (ERT), alglucosidase alfa, and 38 patients never received ERT. Median age at initiation of ERT was 6.5 months. Response to ERT was better in babies who had CRIM-positive, non-classic IOPD. CONCLUSIONS: This study highlights the clinical spectrum of IOPD in India and provides an insight on various factors, such as undernutrition, feeding difficulties, and recurrent respiratory infection, as possible factors influencing clinical outcomes in these patients. The study also reiterates the importance of raising awareness among clinicians about the need for early diagnosis and timely treatment of IOPD.


Subject(s)
Glycogen Storage Disease Type II/genetics , Glycogen Storage Disease Type II/physiopathology , Age of Onset , Cross-Sectional Studies , Female , Glycogen Storage Disease Type II/mortality , Glycogen Storage Disease Type II/therapy , Humans , India/epidemiology , Infant , Infant, Newborn , Male , Phenotype , Retrospective Studies , Treatment Outcome
4.
J Hum Genet ; 65(11): 971-984, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32651481

ABSTRACT

Mucolipidosis (ML) (OMIM 607840 & 607838) is a rare autosomal recessive inherited disorder that occurs due to the deficiency of golgi enzyme uridine diphosphate (UDP)- N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase) responsible for tagging mannose-6-phosphate for proper trafficking of lysosomal enzymes to lysosomes. Variants in GlcNAc-phosphotransferase (GNPTAB (α, ß subunits) and GNPTG (γ subunits) are known to result in impaired targeting of lysosomal enzymes leading to Mucolipidosis (ML) Type II or Type III. We analyzed 69 Indian families of MLII/III for clinical features and molecular spectrum and performed in silico analysis for novel variants. We identified 38 pathogenic variants in GNPTAB and 5 pathogenic variants in GNPTG genes including missense, frame shift, deletion, duplication and splice site variations. A total of 26 novel variants were identified in GNPTAB and 4 in GNPTG gene. In silico studies using mutation prediction software like SIFT, Polyphen2 and protein structure analysis further confirmed the pathogenic nature of the novel sequence variants detected in our study. Except for a common variant c.3503_3504delTC in early onset MLII, we could not establish any other significant genotype and phenotype correlation. This is one of the largest studies reported till date on Mucolipidosis II/III in order to identify mutation spectrum and any recurrent mutations specific to the Indian ethnic population. The mutational spectrum information in Indian patients will be useful in better genetic counselling, carrier detection and prenatal diagnosis for patients with ML II/III.


Subject(s)
Mucolipidoses/genetics , Transferases (Other Substituted Phosphate Groups)/genetics , Adolescent , Adult , Asian People/genetics , Child , Child, Preschool , Exons/genetics , Female , Frameshift Mutation/genetics , Gene Deletion , Gene Duplication/genetics , Genotype , Humans , India/epidemiology , Lysosomes/genetics , Male , Mannosephosphates/genetics , Mucolipidoses/epidemiology , Mucolipidoses/pathology , Mutation, Missense/genetics , Protein Isoforms/genetics , Young Adult
5.
Genet Med ; 21(9): 2043-2058, 2019 09.
Article in English | MEDLINE | ID: mdl-30842647

ABSTRACT

PURPOSE: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS: We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION: Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.


Subject(s)
Developmental Disabilities/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Microcephaly/genetics , Adolescent , Cell Cycle Proteins/genetics , Child , Child, Preschool , DEAD-box RNA Helicases/genetics , Developmental Disabilities/pathology , Exome/genetics , Female , Gene Expression Regulation/genetics , Humans , Infant , Intellectual Disability/pathology , Male , Microcephaly/pathology , Mutation , Pedigree , Phenotype , Ubiquitin-Protein Ligases/genetics , Exome Sequencing , Wnt Signaling Pathway
6.
Am J Med Genet A ; 179(3): 480-485, 2019 03.
Article in English | MEDLINE | ID: mdl-30690882

ABSTRACT

Congenital disorders of glycosylation (CDG) are an extremely rapidly growing and phenotypically versatile group of disorders. Conserved oligomeric Golgi (COG) complexes are hetero-octameric proteins involved in retrograde trafficking within the Golgi. Seven of its eight subunits have a causal role in CDG. To date, only three cases of COG8-CDG have been published but none in the antenatal period. We present the first case of antenatally diagnosed COG8-CDG with facial dysmorphism and additional features such as Dandy-Walker malformation and arthrogryposis multiplex congenita, thus expanding the phenotype of this rare disorder. Trio whole exome sequencing revealed a novel homozygous variant in COG8, which creates a new splice site in exon 5 and protein truncation after 12 amino acids downstream to the newly generated splice site. As the mutations of the previous three patients were also identified in exon 5, it is likely to be a potential mutational hotspot in COG8. An association between antenatally increased nuchal translucency and COG8-CDG is also established, which would alert clinicians to its diagnosis early in gestation. It remains to be seen if this observation can be extended to other COG-CDGs.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Mutation , Phenotype , RNA Splice Sites , Adaptor Proteins, Vesicular Transport/metabolism , Base Sequence , Exons , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Infant, Newborn , Introns , Male , Radiography , Sequence Analysis, DNA , Ultrasonography, Prenatal
7.
J Hepatol ; 67(6): 1253-1264, 2017 12.
Article in English | MEDLINE | ID: mdl-28733223

ABSTRACT

BACKGROUND & AIMS: The bile salt export pump (BSEP, ABCB11), multidrug resistance protein 3 (MDR3, ABCB4) and the ATPase familial intrahepatic cholestasis 1 (FIC1, ATP8B1) mediate bile formation. This study aimed to determine the contribution of mutations and common variants in the FIC1, BSEP and MDR3 genes to cholestatic disorders of differing disease onset and severity. METHODS: Coding exons with flanking intron regions of ATP8B1, ABCB11, and ABCB4 were sequenced in cholestatic patients with assumed genetic cause. The effects of new variants were evaluated by bioinformatic tools and 3D protein modeling. RESULTS: In 427 patients with suspected inherited cholestasis, 149 patients carried at least one disease-causing mutation in FIC1, BSEP or MDR3, respectively. Overall, 154 different mutations were identified, of which 25 were novel. All 13 novel missense mutations were disease-causing according to bioinformatics analyses and homology modeling. Eighty-two percent of patients with at least one disease-causing mutation in either of the three genes were children. One or more common polymorphism(s) were found in FIC1 in 35.3%, BSEP in 64.3% and MDR3 in 72.6% of patients without disease-causing mutations in the respective gene. Minor allele frequencies of common polymorphisms in BSEP and MDR3 varied in our cohort compared to the general population, as described by gnomAD. However, differences in ethnic background may contribute to this effect. CONCLUSIONS: In a large cohort of patients, 154 different variants were detected in FIC1, BSEP, and MDR3, 25 of which were novel. In our cohort, frequencies for risk alleles of BSEP (p.V444A) and MDR3 (p.I237I) polymorphisms were significantly overrepresented in patients without disease-causing mutation in the respective gene, indicating that these common variants can contribute to a cholestatic phenotype. LAY SUMMARY: FIC1, BSEP, and MDR3 represent hepatobiliary transport proteins essential for bile formation. Genetic variants in these transporters underlie a broad spectrum of cholestatic liver diseases. To confirm a genetic contribution to the patients' phenotypes, gene sequencing of these three major cholestasis-related genes was performed in 427 patients and revealed 154 different variants of which 25 have not been previously reported in a database. In patients without a disease-causing mutation, common genetic variants were detected in a high number of cases, indicating that these common variants may contribute to cholestasis development.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Adenosine Triphosphatases/genetics , Cholestasis/genetics , Mutation , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , Genetic Variation , Humans , Infant , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
8.
Am J Med Genet A ; 170(8): 2119-26, 2016 08.
Article in English | MEDLINE | ID: mdl-27197608

ABSTRACT

The utility of fetal autopsy to corroborate antenatal ultrasound findings and to aid genetic counseling is well known. However, the ability to identify an underlying cause for the common indications for which it is performed is not well studied. This study aimed to determine if the diagnostic yield of fetal autopsy in identifying the underlying cause is determined by the indication of the autopsy. Five groups of fetuses were defined based on the indication for the autopsy performed in 903 cases: (i) malformations, (ii) intrauterine death (IUD), (iii) cystic hygroma and hydrops fetalis, (iv) isolated abnormalities of amniotic fluid, and (v) intrauterine growth restriction (IUGR). The highest diagnostic yield was in fetuses with isolated abnormalities of amniotic fluid (77%), followed by those with IUGR (75%), with IUD (69.6%), those in group five (55.2%) and lowest (45%) in fetuses with malformations (P < 0.001). A cause was identified in 77.8% fetuses with multiple malformations compared to 37.5% with isolated malformations (P < 0.001), with chromosomal abnormalities in 31.8% versus 9.9% respectively (P < 0.001) and malformation syndromes in 42.5% versus 26.3% (P < 0.001). Placental examination provided the highest yield in IUD, IUGR, and oligohydramnios (43.1%; P < 0.003) whereas chromosomal analysis was most useful in cystic hygroma/NIHF (28.9%; P < 0.001). This information on the diagnostic yield in fetal autopsy related its common indications, can be utilized to counsel families of the utility of autopsy to establish cause and recurrence risks and thereby assist then to make an informed decision to consent for the procedure. © 2016 Wiley Periodicals, Inc.


Subject(s)
Autopsy , Fetal Death/etiology , Abortion, Spontaneous , Autopsy/methods , Cause of Death , Congenital Abnormalities , Female , Fetal Growth Retardation , Humans , Pregnancy
9.
Am J Med Genet A ; 170(10): 2719-30, 2016 10.
Article in English | MEDLINE | ID: mdl-27338287

ABSTRACT

Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc.


Subject(s)
Mutation , Niemann-Pick Diseases/diagnosis , Niemann-Pick Diseases/genetics , Sphingomyelin Phosphodiesterase/genetics , Adolescent , Alleles , Amino Acid Substitution , Biomarkers , Child , Child, Preschool , Computational Biology/methods , Consanguinity , DNA Mutational Analysis , Enzyme Activation , Exons , Facies , Genotype , Haplotypes , Humans , India , Infant , Infant, Newborn , Models, Molecular , Niemann-Pick Diseases/metabolism , Phenotype , Polymorphism, Single Nucleotide , Prenatal Diagnosis , Protein Conformation , Sphingomyelin Phosphodiesterase/chemistry , Sphingomyelin Phosphodiesterase/metabolism , Splenomegaly
10.
Am J Med Genet A ; 164A(11): 2793-801, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25252036

ABSTRACT

Mucopolysaccharidosis IV A (Morquio syndrome A, MPS IVA) is a lysosomal storage disease caused by the deficiency of N-acetylgalactosamine-6-sulfatase (GALNS). The mutation spectrum in this condition is yet to be determined in Indians. We aimed to analyze the mutations in the GALNS gene in Asian Indians with MPS IVA. All the exons and the adjacent intronic regions of the gene were amplified and sequenced in sixty-eight unrelated Indian families. We identified 136 mutant alleles comprising of 40 different mutations. We report twenty-two novel mutations that comprise of seventeen missense (p.Asn32Thr, p.Leu36Arg, p.Pro52Leu, p.Pro77Ser, p.Cys79Arg, p.His142Pro, p.Tyr191Asp, p.Asn204Thr, p.Gly188Ser, p.Phe216Ser, p.Trp230Cys, p.Ala291Ser, p.Gly317Arg, p.His329Pro, p.Arg386Ser, p.Glu450Gly, p.Cys501Ser), three splice-site variants (c.120+1G>C, c.1003-3C>G, c.1139+1G>A), one nonsense mutation (p.Gln414*) and one frameshift mutation (p.Pro420Leufs*440). Eighteen mutations have been reported earlier. Among these p.Ser287Leu (8.82%), p.Phe216Ser (7.35%), p.Asn32Thr (6.61%) and p.Ala291Ser (5.88%) were the most frequent mutations in Indian patients but were rare in the mutational profiles reported in other populations. These results indicate that the Indian patients may have a distinct mutation spectrum compared to those of other populations. Mutant alleles in exon 1, 7 and 8 accounted for 44.8% of the mutations, and sequencing of these exons initially may be a cost-effective approach in Asian Indian patients. This is the largest study on molecular analysis of patients with MPS IVA reported in the literature, and the first report from India.


Subject(s)
Chondroitinsulfatases/genetics , Mucopolysaccharidosis IV/genetics , Mutation , White People/genetics , Adolescent , Adult , Alleles , Amino Acid Substitution , Child , Child, Preschool , Chondroitinsulfatases/metabolism , Computational Biology , DNA Mutational Analysis , Enzyme Activation , Female , Gene Frequency , Gene Order , Humans , India , Infant , Male , Mucopolysaccharidosis IV/diagnosis , Polymorphism, Single Nucleotide , Pregnancy , Prenatal Diagnosis , Young Adult
11.
Indian J Med Res ; 140(1): 55-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25222778

ABSTRACT

BACKGROUND & OBJECTIVES: Multiple suphphatase deficiency (MSD) is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1). We describe here the mutation analysis of a case of MSD. METHODS: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. RESULTS: The patient was compound heterozygote for a c.451A>G (p.K151E) substitution in exon 3 and a single base insertion mutation (c.690_691 InsT) in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. CONCLUSIONS: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.


Subject(s)
Developmental Disabilities/genetics , Dysostoses/genetics , Multiple Sulfatase Deficiency Disease/genetics , Mutagenesis, Insertional/genetics , Mutation, Missense/genetics , Sulfatases/genetics , Child, Preschool , Computational Biology , Dysostoses/diagnostic imaging , Humans , Male , Oxidoreductases Acting on Sulfur Group Donors , Radiography , Sulfatases/metabolism
12.
Eur J Hum Genet ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605122

ABSTRACT

Next generation sequencing based diagnosis has emerged as a promising tool for evaluating critically ill neonates and children. However, there is limited data on its utility in developing countries. We assessed its diagnostic rate and clinical impact on management of pediatric patients with a suspected genetic disorder requiring critical care. The study was conducted at a single tertiary hospital in Northern India. We analyzed 70 children with an illness requiring intensive care and obtained a precise molecular diagnosis in 32 of 70 probands (45.3%) using diverse sequencing techniques such as clinical exome, whole exome, and whole genome. A significant change in clinical outcome was observed in 13 of 32 (40.6%) diagnosed probands with a change in medication in 11 subjects and redirection to palliative care in two subjects. Additional benefits included specific dietary management (three cases), avoidance of a major procedure (one case) and better reproductive counseling. Dramatic therapeutic responses were observed in three cases with SCN1A, SCN2A and KCNQ2-related epileptic encephalopathy. A delayed turn-around for sequencing results was perceived as a major limiting factor in the study, as rapid and ultra-rapid sequencing was not available. Achieving a precise molecular diagnosis has great utility in managing critically ill patients with suspected genetic disorders in developing countries.

13.
Eur J Med Genet ; 70: 104951, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848991

ABSTRACT

The International Rare Diseases Research Consortium (IRDiRC) Diagnostic Scientific Committee (DSC) is charged with discussion and contribution to progress on diagnostic aspects of the IRDiRC core mission. Specifically, IRDiRC goals include timely diagnosis, use of globally coordinated diagnostic pipelines, and assessing the impact of rare diseases on affected individuals. As part of this mission, the DSC endeavored to create a list of research priorities to achieve these goals. We present a discussion of those priorities along with aspects of current, global rare disease needs and opportunities that support our prioritization. In support of this discussion, we also provide clinical vignettes illustrating real-world examples of diagnostic challenges.

14.
Indian J Pediatr ; 90(1): 83-86, 2023 01.
Article in English | MEDLINE | ID: mdl-36331722

ABSTRACT

Desbuquois dysplasia (DBQD) is an uncommon, autosomal recessive disorder with multiple joint dislocations. It is caused by pathogenic variants in CANT1 (calcium-activated nucleotidase 1) [NM_001159773.2]. This study adds to the scant data of nine reported antenatal phenotypes of DBQD. The present paper describes two unrelated consanguineous families with antenatal features of lethal skeletal dysplasia. The defining radiological changes were identified in only one patient who presented in the late second and third trimesters. Solo exome sequencing was performed and two previously reported homozygous variants c.896C>T (p.Pro299Leu) in patient 1 and c.902_906dup (p.Ser303fs*20) in patient 2 were identified. This study highlights the fetal presentations in DBQD and adds to its phenotypic spectrum. A complete clinical workup, including fetal autopsy and radiographs is essential to confirm the diagnosis of lethal skeletal dysplasia. Molecular diagnosis remains the diagnostic modality to define the causative variant. A definitive diagnosis is essential to inform management and offer reproductive care.


Subject(s)
Dwarfism , Osteochondrodysplasias , Polydactyly , Female , Pregnancy , Humans , Mutation , Dwarfism/genetics , Polydactyly/genetics , Phenotype
15.
Indian J Pediatr ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37804371

ABSTRACT

OBJECTIVES: To determine the diagnostic yield of next generation sequencing (NGS) in patients with moderate/severe/profound intellectual disability (ID) unexplained by conventional tests and to assess the impact of definitive diagnosis on the clinical management and genetic counselling of these families. METHODS: This was a ambi-directional study conducted at Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi. The study comprised 227 patients (prospective cohort - 126, retrospective cohort - 101) in whom NGS based tests were performed. RESULTS: The mean age of study cohort was 4.5 ± 4.4 y (2.5 mo to 37.3 y). The male: female ratio was 1.6:1. The overall diagnostic yield of NGS was 53.3% (121/227) with causative variants identified in 84 known ID genes. Autosomal recessive intellectual disability (ARID) (23.3%, 53/227) was the most common followed by autosomal dominant intellectual disability (ADID) (20.7%, 47/227) and X-linked intellectual disability (XLID) (9.2%, 21/227). The diagnostic yield was notably higher for ID plus associated condition group (55.6% vs. 20%) (p = 0.0075, Fisher's exact test) compared to isolated ID group. The impact of diagnosis on active or long-term management was observed in 17/121 (14%) and on reproductive outcomes in 26/121 (21.4%) families. CONCLUSIONS: There is paucity of data on molecular genetic spectrum of ID from India. The current study identifies extensive genetic heterogeneity and the impact of NGS in patients with ID unexplained by standard genetic tests. The study identified ARID as the most common cause of ID with additional implications for reproductive outcomes. It reiterates the importance of phenotype in genetic testing.

16.
Eur J Med Genet ; 66(9): 104822, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37595943

ABSTRACT

Multicentric carpotarsal osteolysis syndrome (MCTO) is a rare autosomal dominant skeletal dysplasia characterised by swelling and restriction of movement in the wrist and ankle joints, as well as osteolysis of the carpal and tarsal bones, that can be misdiagnosed as juvenile idiopathic arthritis. We describe five Indian families with heterozygous nonrecurrent missense pathogenic variants in exon 1 of MAF bZIP transcription factor B (MAFB).


Subject(s)
Arthrogryposis , Osteolysis , Humans , Osteolysis/diagnostic imaging , Osteolysis/genetics , Asian People , Exons
17.
Eur J Hum Genet ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38030918

ABSTRACT

Oculocutaneous albinism is an inherited disorder of melanin biosynthesis, characterized by absent or reduced pigmentation of the skin, hair, and eyes. Molecular alterations of genes that cause non-syndromic albinism in Asian Indians are poorly characterized. This information would be useful for developing therapies for this disorder. We analyzed 164 persons with non-syndromic albinism, belonging to unrelated families from all parts of India, for molecular changes in the causative genes. Subjects with white hair, white skin, and red iris had their tyrosinase gene sequenced and were also tested by MLPA for deletions/duplications. Subjects with negative results or with darker skin, golden/brown or darker hair had sequencing of TYR, P, TYRP1, SLC45A2 and GPR143 genes. Pathogenic variants in TYR (OCA1) were observed in 139 (84.7%) patients, in the P gene (OCA2) in 20 (12.2%), in TYRP1 (OCA3) in two (1.2%), in SLC45A2 (OCA 4) in one (0.61%), and in GPR143 (X-linked ocular albinism) in two (1.2%) patients. Of 278 alleles with variants in TYR, 179 (64.3%) alleles had (p.R278*) alteration, suggesting the possibility of therapy with a stop codon readthrough molecule. We report 20 patients with 13 disease associated variants in the P gene and 18 novel pathogenic variants in TYR, P, TYRP1, SLC45A2 and GPR143 genes. The data are compared with those reported from India, Pakistan and rest of the world. The therapeutic options in albinism are briefly described, opening this field for future therapies.

18.
Front Public Health ; 11: 1248260, 2023.
Article in English | MEDLINE | ID: mdl-37822540

ABSTRACT

Background: Patients, families, the healthcare system, and society as a whole are all significantly impacted by rare diseases (RDs). According to various classifications, there are currently up to 9,000 different rare diseases that have been recognized, and new diseases are discovered every month. Although very few people are affected by each uncommon disease individually, millions of people are thought to be impacted globally when all these conditions are considered. Therefore, RDs represent an important public health concern. Although crucial for clinical care, early and correct diagnosis is still difficult to achieve in many nations, especially those with low and middle incomes. Consequently, a sizeable amount of the overall burden of RD is attributable to undiagnosed RD (URD). Existing barriers and policy aspects impacting the care of patients with RD and URD remain to be investigated. Methods: To identify unmet needs and opportunities for patients with URD, the Developing Nations Working Group of the Undiagnosed Diseases Network International (DNWG-UDNI) conducted a survey among its members, who were from 20 different nations. The survey used a mix of multiple choice and dedicated open questions covering a variety of topics. To explore reported needs and analyze them in relation to national healthcare economical aspects, publicly available data on (a) World Bank ranking; (b) Current health expenditure per capita; (c) GDP per capita; (d) Domestic general government health expenditure (% of GDP); and (e) Life expectancy at birth, total (years) were incorporated in our study. Results: This study provides an in-depth evaluation of the unmet needs for 20 countries: low-income (3), middle-income (10), and high-income (7). When analyzing reported unmet needs, almost all countries (N = 19) indicated that major barriers still exist when attempting to improve the care of patients with UR and/or URD; most countries report unmet needs related to the availability of specialized care and dedicated facilities. However, while the countries ranked as low income by the World Bank showed the highest prevalence of referred unmet needs across the different domains, no specific trend appeared when comparing the high, upper, and low-middle income nations. No overt trend was observed when separating countries by current health expenditure per capita, GDP per capita, domestic general government health expenditure (% of GDP) and life expectancy at birth, total (years). Conversely, both the GDP and domestic general government health expenditure for each country impacted the presence of ongoing research. Conclusion: We found that policy characteristics varied greatly with the type of health system and country. No overall pattern in terms of referral for unmet needs when separating countries by main economic or health indicators were observed. Our findings highlight the importance of identifying actionable points (e.g., implemented orphan drug acts or registries where not available) in order to improve the care and diagnosis of RDs and URDs on a global scale.


Subject(s)
Undiagnosed Diseases , Infant, Newborn , Humans , Rare Diseases/diagnosis , Rare Diseases/epidemiology , Global Health , Delivery of Health Care , Health Expenditures
19.
Front Public Health ; 11: 1079601, 2023.
Article in English | MEDLINE | ID: mdl-36935719

ABSTRACT

Introduction: Rare diseases (RD) are a health priority worldwide, overall affecting hundreds of millions of people globally. Early and accurate diagnosis is essential to support clinical care but remains challenging in many countries, especially the low- and medium-income ones. Hence, undiagnosed RD (URD) account for a significant portion of the overall RD burden. Methods: In October 2020, the Developing Nations Working Group of the Undiagnosed Diseases Network International (DNWG-UDNI) launched a survey among its members, belonging to 20 countries across all continents, to map unmet needs and opportunities for patients with URD. The survey was based on questions with open answers and included eight different domains. Conflicting interpretations were resolved in contact with the partners involved. Results: All members responded to the survey. The results indicated that the scientific and medical centers make substantial efforts to respond to the unmet needs of patients. In most countries, there is a high awareness of RD issues. Scarcity of resources was highlighted as a major problem, leading to reduced availability of diagnostic expertise and research. Serious equity in accessibility to services were highlighted both within and between participating countries. Regulatory problems, including securing informed consent, difficulties in sending DNA to foreign laboratories, protection of intellectual property, and conflicts of interest on the part of service providers, remain issues of concern. Finally, most respondents stressed the need to strengthen international cooperation in terms of data sharing, clinical research, and diagnostic expertise for URD patients in low and medium income countries. Discussion: The survey highlighted that many countries experienced a discrepancy between the growing expertise and scientific value, the level of awareness and commitment on the part of relevant parties, and funding bodies. Country-tailored public health actions, including general syllabus of medical schools and of the education of other health professionals, are needed to reduce such gaps.


Subject(s)
Undiagnosed Diseases , Humans , Rare Diseases/diagnosis , Surveys and Questionnaires
20.
Indian Pediatr ; 59(3): 198-200, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35105821

ABSTRACT

Genomics is an integral part of many pediatric diseases spanning all sub-specialities. While many genetic disorders are diagnosed with the currently available genomic tests, there still are many patients who do not receive a definitive diagnosis. The Indian Undiagnosed Diseases Program is a multicenter effort to address these challenges and unmet needs of rare disease patients where current available genetic tests have failed to make a diagnosis. It embodies the principles of collaborative effort across multispecialty disciplines, and uses detailed phenotype. Diagnostic methods are tailored to patient specifics and the large genomic data is interrogated with precise, in-house bioinformatics pipelines using patient-specific phenotype to build the diagnostic algorithm. The inception of this research initiative in India is a step towards creating awareness and appreciation of the needs for our undiagnosed cohorts to enable appropriate management in this era of precision medicine.


Subject(s)
Undiagnosed Diseases , Genomics , Humans , Phenotype , Rare Diseases/diagnosis , Uridine Diphosphate
SELECTION OF CITATIONS
SEARCH DETAIL