Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Article in English | MEDLINE | ID: mdl-36965478

ABSTRACT

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Subject(s)
Alternative Splicing , DNA-Binding Proteins , Paraparesis, Spastic , Transcription Factors , Paraparesis, Spastic/genetics , Humans , DNA-Binding Proteins/genetics , Transcription Factors/genetics , HeLa Cells , Protein Isoforms/genetics , RNA-Seq , Male , Female , Pedigree , Alleles , Infant , Child, Preschool , Child , Adolescent , Protein Structure, Secondary , RNA, Small Nuclear/genetics
2.
Genet Med ; 23(6): 1075-1085, 2021 06.
Article in English | MEDLINE | ID: mdl-33580225

ABSTRACT

PURPOSE: Genomic sequencing has become an increasingly powerful and relevant tool to be leveraged for the discovery of genetic aberrations underlying rare, Mendelian conditions. Although the computational tools incorporated into diagnostic workflows for this task are continually evolving and improving, we nevertheless sought to investigate commonalities across sequencing processing workflows to reveal consensus and standard practice tools and highlight exploratory analyses where technical and theoretical method improvements would be most impactful. METHODS: We collected details regarding the computational approaches used by a genetic testing laboratory and 11 clinical research sites in the United States participating in the Undiagnosed Diseases Network via meetings with bioinformaticians, online survey forms, and analyses of internal protocols. RESULTS: We found that tools for processing genomic sequencing data can be grouped into four distinct categories. Whereas well-established practices exist for initial variant calling and quality control steps, there is substantial divergence across sites in later stages for variant prioritization and multimodal data integration, demonstrating a diversity of approaches for solving the most mysterious undiagnosed cases. CONCLUSION: The largest differences across diagnostic workflows suggest that advances in structural variant detection, noncoding variant interpretation, and integration of additional biomedical data may be especially promising for solving chronically undiagnosed cases.


Subject(s)
Genomics , Undiagnosed Diseases , Computational Biology , Genetic Testing , Genome , Humans , Software , Workflow
3.
Am J Hum Genet ; 97(1): 99-110, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26119818

ABSTRACT

Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding.


Subject(s)
Abnormalities, Multiple/genetics , Eye Abnormalities/genetics , Eyelid Diseases/genetics , Hirsutism/genetics , Hypertelorism/genetics , Hypertrichosis/genetics , Macrostomia/genetics , Models, Molecular , Phenotype , Repressor Proteins/genetics , Skin Abnormalities/genetics , Twist-Related Protein 1/genetics , Abnormalities, Multiple/pathology , Amino Acid Sequence , Animals , Base Sequence , Chromatin Immunoprecipitation , Exome/genetics , Eye Abnormalities/pathology , Eyelid Diseases/pathology , HeLa Cells , Hirsutism/pathology , Humans , Hypertelorism/pathology , Hypertrichosis/pathology , Macrostomia/pathology , Microscopy, Electron , Molecular Sequence Data , Mutation, Missense/genetics , Protein Conformation , Repressor Proteins/chemistry , Sequence Analysis, DNA , Skin Abnormalities/pathology , Twist-Related Protein 1/chemistry , Zebrafish
4.
Nature ; 456(7220): 387-90, 2008 Nov 20.
Article in English | MEDLINE | ID: mdl-19020620

ABSTRACT

In 1994, two independent groups extracted DNA from several Pleistocene epoch mammoths and noted differences among individual specimens. Subsequently, DNA sequences have been published for a number of extinct species. However, such ancient DNA is often fragmented and damaged, and studies to date have typically focused on short mitochondrial sequences, never yielding more than a fraction of a per cent of any nuclear genome. Here we describe 4.17 billion bases (Gb) of sequence from several mammoth specimens, 3.3 billion (80%) of which are from the woolly mammoth (Mammuthus primigenius) genome and thus comprise an extensive set of genome-wide sequence from an extinct species. Our data support earlier reports that elephantid genomes exceed 4 Gb. The estimated divergence rate between mammoth and African elephant is half of that between human and chimpanzee. The observed number of nucleotide differences between two particular mammoths was approximately one-eighth of that between one of them and the African elephant, corresponding to a separation between the mammoths of 1.5-2.0 Myr. The estimated probability that orthologous elephant and mammoth amino acids differ is 0.002, corresponding to about one residue per protein. Differences were discovered between mammoth and African elephant in amino-acid positions that are otherwise invariant over several billion years of combined mammalian evolution. This study shows that nuclear genome sequencing of extinct species can reveal population differences not evident from the fossil record, and perhaps even discover genetic factors that affect extinction.


Subject(s)
Cell Nucleus/genetics , Elephants/genetics , Evolution, Molecular , Extinction, Biological , Fossils , Genome/genetics , Genomics , Sequence Analysis, DNA/methods , Africa , Animals , Conserved Sequence/genetics , Elephants/anatomy & histology , Female , Hair/metabolism , Humans , India , Male , Phylogeny
5.
BMC Med Genomics ; 9(1): 56, 2016 08 27.
Article in English | MEDLINE | ID: mdl-27568008

ABSTRACT

BACKGROUND: Exome sequencing has advanced to clinical practice and proven useful for obtaining molecular diagnoses in rare diseases. In approximately 75 % of cases, however, a clinical exome study does not produce a definitive molecular diagnosis. These residual cases comprise a new diagnostic challenge for the genetics community. The Undiagnosed Diseases Program of the National Institutes of Health routinely utilizes exome sequencing for refractory clinical cases. Our preliminary data suggest that disease-causing variants may be missed by current standard-of-care clinical exome analysis. Such false negatives reflect limitations in experimental design, technical performance, and data analysis. RESULTS: We present examples from our datasets to quantify the analytical performance associated with current practices, and explore strategies to improve the completeness of data analysis. In particular, we focus on patient ascertainment, exome capture, inclusion of intronic variants, and evaluation of medium-sized structural variants. CONCLUSIONS: The strategies we present may recover previously-missed, disease causing variants in second-pass exome analysis. Understanding the limitations of the current clinical exome search space provides a rational basis to improve methods for disease variant detection using genome-scale sequencing techniques.


Subject(s)
Exome/genetics , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing , Humans
6.
Cold Spring Harb Mol Case Stud ; 2(6): a001289, 2016 11.
Article in English | MEDLINE | ID: mdl-27900370

ABSTRACT

This study describes a 13-yr-old girl with orthostatic intolerance, respiratory weakness, multiple endocrine abnormalities, pancreatic insufficiency, and multiorgan failure involving the gut and bladder. Exome sequencing revealed a de novo, loss-of-function allele in SLC12A2, the gene encoding the Na-K-2Cl cotransporter-1. The 11-bp deletion in exon 22 results in frameshift (p.Val1026Phefs*2) and truncation of the carboxy-terminal tail of the cotransporter. Preliminary studies in heterologous expression systems demonstrate that the mutation leads to a nonfunctional transporter, which is expressed and trafficked to the plasma membrane alongside wild-type NKCC1. The truncated protein, visible at higher molecular sizes, indicates either enhanced dimerization or misfolded aggregate. No significant dominant-negative effect was observed. K+ transport experiments performed in fibroblasts from the patient showed reduced total and NKCC1-mediated K+ influx. The absence of a bumetanide effect on K+ influx in patient fibroblasts only under hypertonic conditions suggests a deficit in NKCC1 regulation. We propose that disruption in NKCC1 function might affect sensory afferents and/or smooth muscle cells, as their functions depend on NKCC1 creating a Cl- gradient across the plasma membrane. This Cl- gradient allows the γ-aminobutyric acid (GABA) receptor or other Cl- channels to depolarize the membrane affecting processes such as neurotransmission or cell contraction. Under this hypothesis, disrupted sensory and smooth muscle function in a diverse set of tissues could explain the patient's phenotype.


Subject(s)
Solute Carrier Family 12, Member 2/genetics , Adolescent , Alleles , Carrier Proteins/genetics , Cell Membrane/metabolism , Chlorides/metabolism , Female , Fibroblasts/metabolism , Humans , Mutation , Sequence Deletion/genetics , Sodium/metabolism , Sodium, Dietary/metabolism , Sodium-Potassium-Chloride Symporters/genetics , Solute Carrier Family 12, Member 2/metabolism , Exome Sequencing/methods
7.
Orphanet J Rare Dis ; 11(1): 62, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27179618

ABSTRACT

BACKGROUND: Mutations of TCF4, which encodes a basic helix-loop-helix transcription factor, cause Pitt-Hopkins syndrome (PTHS) via multiple genetic mechanisms. TCF4 is a complex locus expressing multiple transcripts by alternative splicing and use of multiple promoters. To address the relationship between mutation of these transcripts and phenotype, we report a three-generation family segregating mild intellectual disability with a chromosomal translocation disrupting TCF4. RESULTS: Using whole genome sequencing, we detected a complex unbalanced karyotype disrupting TCF4 (46,XY,del(14)(q23.3q23.3)del(18)(q21.2q21.2)del(18)(q21.2q21.2)inv(18)(q21.2q21.2)t(14;18)(q23.3;q21.2)(14pter®14q23.3::18q21.2®18q21.2::18q21.1®18qter;18pter®18q21.2::14q23.3®14qter). Subsequent transcriptome sequencing, qRT-PCR and nCounter analyses revealed that cultured skin fibroblasts and peripheral blood had normal expression of genes along chromosomes 14 or 18 and no marked changes in expression of genes other than TCF4. Affected individuals had 12-33 fold higher mRNA levels of TCF4 than did unaffected controls or individuals with PTHS. Although the derivative chromosome generated a PLEKHG3-TCF4 fusion transcript, the increased levels of TCF4 mRNA arose from transcript variants originating distal to the translocation breakpoint, not from the fusion transcript. CONCLUSIONS: Although validation in additional patients is required, our findings suggest that the dysmorphic features and severe intellectual disability characteristic of PTHS are partially rescued by overexpression of those short TCF4 transcripts encoding a nuclear localization signal, a transcription activation domain, and the basic helix-loop-helix domain.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Intellectual Disability/genetics , Protein Isoforms/genetics , Transcription Factors/genetics , Translocation, Genetic/genetics , Alternative Splicing/genetics , Child , Facies , Female , Humans , Hyperventilation/genetics , Mutation/genetics , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Transcription Factor 4
SELECTION OF CITATIONS
SEARCH DETAIL