Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 609(7928): 801-807, 2022 09.
Article in English | MEDLINE | ID: mdl-35901960

ABSTRACT

Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including ß-hydroxybutyrate (BHB)1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with  influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4+ T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4+ T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19.


Subject(s)
COVID-19 , Energy Metabolism , Ketones , Respiratory Distress Syndrome , SARS-CoV-2 , T-Lymphocytes , 3-Hydroxybutyric Acid/biosynthesis , 3-Hydroxybutyric Acid/metabolism , Amino Acids/biosynthesis , Amino Acids/metabolism , Animals , COVID-19/complications , COVID-19/immunology , COVID-19/pathology , Diet, Ketogenic , Esters/metabolism , Glutathione/biosynthesis , Glutathione/metabolism , Glycolysis , Interferon-gamma/biosynthesis , Ketone Bodies/metabolism , Ketones/metabolism , Mice , Orthomyxoviridae/pathogenicity , Oxidation-Reduction , Oxidative Phosphorylation , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
2.
Infection ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896372

ABSTRACT

PURPOSE: There is evidence that lower activity of the RAF/MEK/ERK network is associated with positive outcomes in mild and moderate courses of COVID-19. The effect of this cascade in COVID-19 sepsis is still undetermined. Therefore, we tested the hypothesis that activity of the RAF/MEK/ERK network in COVID-19-induced sepsis is associated with an impact on 30-day survival. METHODS: We used biomaterial from 81 prospectively recruited patients from the multicentric CovidDataNet.NRW-study cohort (German clinical trial registry: DRKS00026184) with their collected medical history, vital signs, laboratory parameters, microbiological findings and patient outcome. ERK activity was measured by evaluating ERK phosphorylation using a Proximity Ligation Assay. RESULTS: An increased ERK activity at 4 days after diagnosis of COVID-19-induced sepsis was associated with a more than threefold increased chance of survival in an adjusted Cox regression model. ERK activity was independent of other confounders such as Charlson Comorbidity Index or SOFA score (HR 0.28, 95% CI 0.10-0.84, p = 0.02). CONCLUSION: High activity of the RAF/MEK/ERK network during the course of COVID-19 sepsis is a protective factor and may indicate recovery of the immune system. Further studies are needed to confirm these results.

3.
Infection ; 52(2): 413-427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37684496

ABSTRACT

PURPOSE: Timely and accurate data on the epidemiology of sepsis are essential to inform policy decisions and research priorities. We aimed to investigate the validity of inpatient administrative health data (IAHD) for surveillance and quality assurance of sepsis care. METHODS: We conducted a retrospective validation study in a disproportional stratified random sample of 10,334 inpatient cases of age ≥ 15 years treated in 2015-2017 in ten German hospitals. The accuracy of coding of sepsis and risk factors for mortality in IAHD was assessed compared to reference standard diagnoses obtained by a chart review. Hospital-level risk-adjusted mortality of sepsis as calculated from IAHD information was compared to mortality calculated from chart review information. RESULTS: ICD-coding of sepsis in IAHD showed high positive predictive value (76.9-85.7% depending on sepsis definition), but low sensitivity (26.8-38%), which led to an underestimation of sepsis incidence (1.4% vs. 3.3% for severe sepsis-1). Not naming sepsis in the chart was strongly associated with under-coding of sepsis. The frequency of correctly naming sepsis and ICD-coding of sepsis varied strongly between hospitals (range of sensitivity of naming: 29-71.7%, of ICD-diagnosis: 10.7-58.5%). Risk-adjusted mortality of sepsis per hospital calculated from coding in IAHD showed no substantial correlation to reference standard risk-adjusted mortality (r = 0.09). CONCLUSION: Due to the under-coding of sepsis in IAHD, previous epidemiological studies underestimated the burden of sepsis in Germany. There is a large variability between hospitals in accuracy of diagnosing and coding of sepsis. Therefore, IAHD alone is not suited to assess quality of sepsis care.


Subject(s)
Hospitals , Sepsis , Humans , Adolescent , Retrospective Studies , Hospital Mortality , Sepsis/diagnosis , Sepsis/epidemiology , Bias
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279209

ABSTRACT

Sepsis involves an immunological systemic response to a microbial pathogenic insult, leading to a cascade of interconnected biochemical, cellular, and organ-organ interaction networks. Potential drug targets can depict aquaporins, as they are involved in immunological processes. In immune cells, AQP3 and AQP9 are of special interest. In this study, we tested the hypothesis that these aquaporins are expressed in the blood cells of septic patients and impact sepsis survival. Clinical data, routine laboratory parameters, and blood samples from septic patients were analyzed on day 1 and day 8 after sepsis diagnosis. AQP expression and cytokine serum concentrations were measured. AQP3 mRNA expression increased over the duration of sepsis and was correlated with lymphocyte count. High AQP3 expression was associated with increased survival. In contrast, AQP9 expression was not altered during sepsis and was correlated with neutrophil count, and low levels of AQP9 were associated with increased survival. Furthermore, AQP9 expression was an independent risk factor for sepsis lethality. In conclusion, AQP3 and AQP9 may play contrary roles in the pathophysiology of sepsis, and these results suggest that AQP9 may be a novel drug target in sepsis and, concurrently, a valuable biomarker of the disease.


Subject(s)
Aquaporins , Sepsis , Humans , Aquaporin 3/genetics , Aquaporin 3/metabolism , Aquaporins/genetics , Aquaporins/metabolism , Sepsis/genetics
5.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338680

ABSTRACT

Sepsis is a common life-threatening disease caused by dysregulated immune response and metabolic acidosis which lead to organ failure. An abnormal expression of aquaporins plays an important role in organ failure. Additionally, genetic variants in aquaporins impact on the outcome in sepsis. Thus, we investigated the polymorphism (rs17553719) and expression of aquaporin-3 (AQP3) and correlated these measurements with the survival of sepsis patients. Accordingly, we collected blood samples on several days (plus clinical data) from 265 sepsis patients who stayed in different ICUs in Germany. Serum plasma, DNA, and RNA were then separated to detect the promotor genotypes of AQP3 mRNA expression of AQP3 and several cytokines. The results showed that the homozygote CC genotype exhibited a significant decrease in 30-day survival (38.9%) compared to the CT (66.15%) and TT genotypes (76.3%) (p = 0.003). Moreover, AQP3 mRNA expression was significantly higher and nearly doubled in the CC compared to the CT (p = 0.0044) and TT genotypes (p = 0.018) on the day of study inclusion. This was accompanied by an increased IL-33 concentration in the CC genotype (day 0: p = 0.0026 and day 3: p = 0.008). In summary, the C allele of the AQP3 polymorphism (rs17553719) shows an association with increased AQP3 expression and IL-33 concentration accompanied by decreased survival in patients with sepsis.


Subject(s)
Aquaporins , Sepsis , Humans , Aquaporin 3/genetics , Aquaporins/genetics , Aquaporins/metabolism , Genotype , Interleukin-33/genetics , Interleukin-33/metabolism , RNA, Messenger/metabolism , Sepsis/genetics , Sepsis/metabolism
6.
Respir Res ; 24(1): 58, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36805707

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) results in significant hypoxia, and ARDS is the central pathology of COVID-19. Inhaled prostacyclin has been proposed as a therapy for ARDS, but data regarding its role in this syndrome are unavailable. Therefore, we investigated whether inhaled prostacyclin would affect the oxygenation and survival of patients suffering from ARDS. METHODS: We performed a prospective randomized controlled single-blind multicenter trial across Germany. The trial was conducted from March 2019 with final follow-up on 12th of August 2021. Patients with moderate to severe ARDS were included and randomized to receive either inhaled prostacyclin (3 times/day for 5 days) or sodium chloride (Placebo). The primary outcome was the oxygenation index in the intervention and control groups on Day 5 of therapy. Secondary outcomes were mortality, secondary organ failure, disease severity and adverse events. RESULTS: Of 707 patients approached 150 patients were randomized to receive inhaled prostacyclin (n = 73) or sodium chloride (n = 77). Data from 144 patients were analyzed. The baseline PaO2/FiO2 ratio did not differ between groups. The primary analysis of the study was negative, and prostacyclin improved oxygenation by 20 mmHg more than Placebo (p = 0.17). Secondary analysis showed that the oxygenation was significantly improved in patients with ARDS who were COVID-19-positive (34 mmHg, p = 0.04). Mortality did not differ between groups. Secondary organ failure and adverse events were similar in the intervention and control groups. CONCLUSIONS: The primary result of our study was negative. Our data suggest that inhaled prostacyclin might be beneficial treatment in patients with COVID-19 induced ARDS. TRIAL REGISTRATION: The study was approved by the Institutional Review Board of the Research Ethics Committee of the University of Tübingen (899/2018AMG1) and the corresponding ethical review boards of all participating centers. The trial was also approved by the Federal Institute for Drugs and Medical Devices (BfArM, EudraCT No. 2016003168-37) and registered at clinicaltrials.gov (NCT03111212) on April 6th 2017.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Epoprostenol/adverse effects , Prospective Studies , Single-Blind Method , Sodium Chloride , Prostaglandins I , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/drug therapy
7.
Crit Care ; 27(1): 48, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36740717

ABSTRACT

RATIONALE: Health-related quality of life after surviving acute respiratory distress syndrome has come into focus in recent years, especially during the coronavirus disease 2019 pandemic. OBJECTIVES: A total of 144 patients with acute respiratory distress syndrome caused by COVID-19 or of other origin were recruited in a randomized multicenter trial. METHODS: Clinical data during intensive care treatment and data up to 180 days after study inclusion were collected. Changes in the Sequential Organ Failure Assessment score were used to quantify disease severity. Disability was assessed using the Barthel index on days 1, 28, 90, and 180. MEASUREMENTS: Mortality rate and morbidity after 180 days were compared between patients with and without COVID-19. Independent risk factors associated with high disability were identified using a binary logistic regression. MAIN RESULTS: The SOFA score at day 5 was an independent risk factor for high disability in both groups, and score dynamic within the first 5 days significantly impacted disability in the non-COVID group. Mortality after 180 days and impairment measured by the Barthel index did not differ between patients with and without COVID-19. CONCLUSIONS: Resolution of organ dysfunction within the first 5 days significantly impacts long-term morbidity. Acute respiratory distress syndrome caused by COVID-19 was not associated with increased mortality or morbidity.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/therapy , COVID-19/complications , SARS-CoV-2 , Functional Status , Quality of Life , Respiratory Distress Syndrome/drug therapy
8.
Br J Anaesth ; 131(3): 607-616, 2023 09.
Article in English | MEDLINE | ID: mdl-37208282

ABSTRACT

BACKGROUND: Tracheal intubation is a high-risk procedure in the critically ill, with increased intubation failure rates and a high risk of other adverse events. Videolaryngoscopy might improve intubation outcomes in this population, but evidence remains conflicting, and its impact on adverse event rates is debated. METHODS: This is a subanalysis of a large international prospective cohort of critically ill patients (INTUBE Study) performed from 1 October 2018 to 31 July 2019 and involving 197 sites from 29 countries across five continents. Our primary aim was to determine the first-pass intubation success rates of videolaryngoscopy. Secondary aims were characterising (a) videolaryngoscopy use in the critically ill patient population and (b) the incidence of severe adverse effects compared with direct laryngoscopy. RESULTS: Of 2916 patients, videolaryngoscopy was used in 500 patients (17.2%) and direct laryngoscopy in 2416 (82.8%). First-pass intubation success was higher with videolaryngoscopy compared with direct laryngoscopy (84% vs 79%, P=0.02). Patients undergoing videolaryngoscopy had a higher frequency of difficult airway predictors (60% vs 40%, P<0.001). In adjusted analyses, videolaryngoscopy increased the probability of first-pass intubation success, with an OR of 1.40 (95% confidence interval [CI] 1.05-1.87). Videolaryngoscopy was not significantly associated with risk of major adverse events (odds ratio 1.24, 95% CI 0.95-1.62) or cardiovascular events (odds ratio 0.78, 95% CI 0.60-1.02). CONCLUSIONS: In critically ill patients, videolaryngoscopy was associated with higher first-pass intubation success rates, despite being used in a population at higher risk of difficult airway management. Videolaryngoscopy was not associated with overall risk of major adverse events. CLINICAL TRIAL REGISTRATION: NCT03616054.


Subject(s)
Critical Illness , Laryngoscopes , Humans , Critical Illness/therapy , Intubation, Intratracheal/adverse effects , Intubation, Intratracheal/methods , Laryngoscopy/adverse effects , Laryngoscopy/methods , Prospective Studies
9.
Am J Respir Crit Care Med ; 206(4): 449-458, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35536310

ABSTRACT

Rationale: Cardiovascular instability/collapse is a common peri-intubation event in patients who are critically ill. Objectives: To identify potentially modifiable variables associated with peri-intubation cardiovascular instability/collapse (i.e., systolic arterial pressure <65 mm Hg [once] or <90 mm Hg for >30 minutes; new/increased vasopressor requirement; fluid bolus >15 ml/kg, or cardiac arrest). Methods: INTUBE (International Observational Study to Understand the Impact and Best Practices of Airway Management In Critically Ill Patients) was a multicenter prospective cohort study of patients who were critically ill and undergoing tracheal intubation in a convenience sample of 197 sites from 29 countries across five continents from October 1, 2018, to July 31, 2019. Measurements and Main Results: A total of 2,760 patients were included in this analysis. Peri-intubation cardiovascular instability/collapse occurred in 1,199 out of 2,760 patients (43.4%). Variables associated with this event were older age (odds ratio [OR], 1.02; 95% confidence interval [CI], 1.02-1.03), higher heart rate (OR, 1.008; 95% CI, 1.004-1.012), lower systolic blood pressure (OR, 0.98; 95% CI, 0.98-0.99), lower oxygen saturation as measured by pulse oximetry/FiO2 before induction (OR, 0.998; 95% CI, 0.997-0.999), and the use of propofol as an induction agent (OR, 1.28; 95% CI, 1.05-1.57). Patients with peri-intubation cardiovascular instability/collapse were at a higher risk of ICU mortality with an adjusted OR of 2.47 (95% CI, 1.72-3.55), P < 0.001. The inverse probability of treatment weighting method identified the use of propofol as the only factor independently associated with cardiovascular instability/collapse (OR, 1.23; 95% CI, 1.02-1.49). When administered before induction, vasopressors (OR, 1.33; 95% CI, 0.84-2.11) or fluid boluses (OR, 1.17; 95% CI, 0.96-1.44) did not reduce the incidence of cardiovascular instability/collapse. Conclusions: Peri-intubation cardiovascular instability/collapse was associated with an increased risk of both ICU and 28-day mortality. The use of propofol for induction was identified as a modifiable intervention significantly associated with cardiovascular instability/collapse.Clinical trial registered with clinicaltrials.gov (NCT03616054).


Subject(s)
Propofol , Shock , Critical Illness/therapy , Humans , Intubation, Intratracheal/adverse effects , Intubation, Intratracheal/methods , Propofol/therapeutic use , Prospective Studies , Shock/drug therapy , Vasoconstrictor Agents/therapeutic use
10.
Neurosurg Rev ; 46(1): 30, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36593389

ABSTRACT

Postoperative intensive care unit (ICU) monitoring is an established option to ensure patient safety after resection of newly diagnosed glioblastoma. In contrast, secondary unplanned ICU readmission following complicating events during the initial postoperative course might be associated with severe morbidity and impair initially intended surgical benefit. In the present study, we assessed the prognostic impact of secondary ICU readmission and aimed to identify preoperatively ascertainable risk factors for the development of such adverse events in patients treated surgically for newly diagnosed glioblastoma. Between 2013 and 2018, 240 patients were surgically treated for newly diagnosed glioblastoma at the authors' neuro-oncological center. Secondary ICU readmission was defined as any unplanned admission to the ICU during initial hospital stay. A multivariable logistic regression analysis was performed to identify preoperatively measurable risk factors for unplanned ICU readmission. Nineteen of 240 glioblastoma patients (8%) were readmitted to the ICU. Median overall survival of patients with unplanned ICU readmission was 9 months compared to 17 months for patients without secondary ICU readmission (p=0.008). Multivariable analysis identified "preoperative administration of dexamethasone > 7 days" (p=0.002) as a significant and independent predictor of secondary unplanned ICU admission. Secondary ICU readmission following surgery for newly diagnosed glioblastoma is significantly associated with poor survival and thus may negate surgically achieved prerequisites for further treatment. This underlines the indispensability of precise patient selection as well as the importance of further scientific debate on these highly relevant aspects for patient safety.


Subject(s)
Glioblastoma , Patient Readmission , Humans , Glioblastoma/surgery , Retrospective Studies , Intensive Care Units , Risk Factors , Length of Stay
11.
Neurosurg Rev ; 46(1): 155, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37382699

ABSTRACT

OBJECT: Postoperative intensive care unit (ICU) monitoring is a common regime after neurosurgical resection of brain metastasis (BM). In comparison, unplanned secondary readmission to the ICU after initial postoperative treatment course occurs in response to adverse events and might significantly impact patient prognosis. In the present study, we analyzed the potential prognostic implications of unplanned readmission to the ICU and aimed at identifying preoperatively collectable risk factors for the development of such adverse events. METHODS: Between 2013 and 2018, 353 patients with BM had undergone BM resection at the authors' institution. Secondary ICU admission was defined as any unplanned admission to the ICU during the initial hospital stay. A multivariable logistic regression analysis was performed to identify preoperatively identifiable risk factors for unplanned ICU readmission. RESULTS: A total of 19 patients (5%) were readmitted to the ICU. Median overall survival (mOS) of patients with unplanned ICU readmission was 2 months (mo) compared to 13 mo for patients without secondary ICU admission (p<0.0001). Multivariable analysis identified "multiple BM" (p=0.02) and "preoperative CRP levels > 10 mg/dl" (p=0.01) as significant and independent predictors of secondary ICU admission. CONCLUSIONS: Unplanned ICU readmission following surgical therapy for BM is significantly related to poor OS. Furthermore, the present study identifies routinely collectable risk factors indicating patients that are at a high risk for unplanned ICU readmission after BM surgery.


Subject(s)
Brain Neoplasms , Patient Readmission , Humans , Hospitalization , Intensive Care Units , Brain Neoplasms/surgery , Craniotomy
12.
Pneumologie ; 2023 Oct 13.
Article in German | MEDLINE | ID: mdl-37832578

ABSTRACT

The guideline update outlines the advantages as well as the limitations of NIV in the treatment of acute respiratory failure in daily clinical practice and in different indications.Non-invasive ventilation (NIV) has a high value in therapy of hypercapnic acute respiratory failure, as it significantly reduces the length of ICU stay and hospitalization as well as mortality.Patients with cardiopulmonary edema and acute respiratory failure should be treated with continuous positive airway pressure (CPAP) and oxygen in addition to necessary cardiological interventions. This should be done already prehospital and in the emergency department.In case of other forms of acute hypoxaemic respiratory failure with only mild or moderately disturbed gas exchange (PaO2/FiO2 > 150 mmHg) there is no significant advantage or disadvantage compared to high flow nasal oxygen (HFNO). In severe forms of ARDS NIV is associated with high rates of treatment failure and mortality, especially in cases with NIV-failure and delayed intubation.NIV should be used for preoxygenation before intubation. In patients at risk, NIV is recommended to reduce extubation failure. In the weaning process from invasive ventilation NIV essentially reduces the risk of reintubation in hypercapnic patients. NIV is regarded useful within palliative care for reduction of dyspnea and improving quality of life, but here in concurrence to HFNO, which is regarded as more comfortable. Meanwhile NIV is also recommended in prehospital setting, especially in hypercapnic respiratory failure and pulmonary edema.With appropriate monitoring in an intensive care unit NIV can also be successfully applied in pediatric patients with acute respiratory insufficiency.

13.
Crit Care Med ; 50(6): e526-e538, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35020672

ABSTRACT

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) is a potentially lifesaving procedure in acute respiratory distress syndrome (ARDS) due to COVID-19. Previous studies have shown a high prevalence of clinically silent cerebral microbleeds in patients with COVID-19. Based on this fact, together with the hemotrauma and the requirement of therapeutic anticoagulation on ECMO support, we hypothesized an increased risk of intracranial hemorrhages (ICHs). We analyzed ICH occurrence rate, circumstances and clinical outcome in patients that received ECMO support due to COVID-19-induced ARDS in comparison to viral non-COVID-19-induced ARDS intracerebral hemorrhage. DESIGN: Multicenter, retrospective analysis between January 2010 and May 2021. SETTING: Three tertiary care ECMO centers in Germany and Switzerland. PATIENTS: Two-hundred ten ARDS patients on ECMO support (COVID-19, n = 142 vs viral non-COVID, n = 68). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Evaluation of ICH occurrence rate, parameters of coagulation and anticoagulation strategies, inflammation, and ICU survival. COVID-19 and non-COVID-19 ARDS patients showed comparable disease severity regarding Sequential Organ Failure Assessment score, while the oxygenation index before ECMO cannulation was higher in the COVID group (82 vs 65 mm Hg). Overall, ICH of any severity occurred in 29 of 142 COVID-19 patients (20%) versus four of 68 patients in the control ECMO group (6%). Fifteen of those 29 ICH events in the COVID-19 group were classified as major (52%) including nine fatal cases (9/29, 31%). In the control group, there was only one major ICH event (1/4, 25%). The adjusted subhazard ratio for the occurrence of an ICH in the COVID-19 group was 5.82 (97.5% CI, 1.9-17.8; p = 0.002). The overall ICU mortality in the presence of ICH of any severity was 88%. CONCLUSIONS: This retrospective multicenter analysis showed a six-fold increased adjusted risk for ICH and a 3.5-fold increased incidence of ICH in COVID-19 patients on ECMO. Prospective studies are needed to confirm this observation and to determine whether the bleeding risk can be reduced by adjusting anticoagulation strategies.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Anticoagulants/therapeutic use , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Humans , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Retrospective Studies
14.
Respir Res ; 23(1): 21, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35130879

ABSTRACT

BACKGROUND: Inhalation of dust containing silica particles is associated with severe pulmonary inflammation and lung injury leading to chronic silicosis including fibrotic remodeling of the lung. Silicosis represents a major global health problem causing more than 45.000 deaths per year. The inflammasome-caspase-1 pathway contributes to the development of silica-induced inflammation and fibrosis via IL-1ß and IL-18 production. Recent studies indicate that tetracycline can be used to treat inflammatory diseases mediated by IL-1ß and IL-18. Therefore, we hypothesized that tetracycline reduces silica-induced lung injury and lung fibrosis resulting from chronic silicosis via limiting IL-1ß and IL-18 driven inflammation. METHODS: To investigate whether tetracycline is a therapeutic option to block inflammasome-caspase-1 driven inflammation in silicosis, we incubated macrophages with silica alone or combined with tetracycline. The in vivo effect of tetracycline was determined after intratracheal administration of silica into the mouse lung. RESULTS: Tetracycline selectively blocks IL-1ß production and pyroptotic cell death via inhibition of caspase-1 in macrophages exposed to silica particles. Consistent, treatment of silica-instilled mice with tetracycline significantly reduced pulmonary caspase-1 activation as well as IL-1ß and IL-18 production, thereby ameliorating pulmonary inflammation and lung injury. Furthermore, prolonged tetracycline administration in a model of chronic silicosis reduced lung damage and fibrotic remodeling. CONCLUSIONS: These findings suggest that tetracycline inhibits caspase-1-dependent production of IL-1ß in response to silica in vitro and in vivo. The results were consistent with tetracycline reducing silica-induced pulmonary inflammation and chronic silicosis in terms of lung injury and fibrosis. Thus, tetracycline could be effective in the treatment of patients with silicosis as well as other diseases involving silicotic inflammation.


Subject(s)
Caspase 1/metabolism , Caspase Inhibitors/therapeutic use , Pneumonia/drug therapy , Pulmonary Fibrosis/drug therapy , Tetracycline/therapeutic use , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Pneumonia/chemically induced , Pneumonia/metabolism , Protein Synthesis Inhibitors/therapeutic use , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Silicon Dioxide/toxicity
15.
Crit Care ; 26(1): 74, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35337355

ABSTRACT

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2022 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .


Subject(s)
Critical Illness , Emergency Medicine , Critical Care , Critical Illness/therapy , Humans , Immunomodulation , Tetracyclines
16.
Crit Care ; 26(1): 134, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551628

ABSTRACT

BACKGROUND: Recently, a randomized controlled trial (RCT) demonstrated rapid but individually variable hemodynamic improvement with therapeutic plasma exchange (TPE) in patients with septic shock. Prediction of clinical efficacy in specific sepsis treatments is fundamental for individualized sepsis therapy. METHODS: In the original RCT, patients with septic shock of < 24 h duration and norepinephrine (NE) requirement ≥ 0.4 µg/kg/min received standard of care (SOC) or SOC + one single TPE. Here, we report all clinical and biological endpoints of this study. Multivariate mixed-effects modeling of NE reduction was performed to investigate characteristics that could be associated with clinical response to TPE. RESULTS: A continuous effect of TPE on the reduction in NE doses over the initial 24 h was observed (SOC group: estimated NE dose reduction of 0.005 µg/kg/min per hour; TPE group: 0.018 µg/kg/min per hour, p = 0.004). Similarly, under TPE, serum lactate levels, continuously decreased over the initial 24 h in the TPE group, whereas lactate levels increased under SOC (p = 0.001). A reduction in biomarkers and disease mediators (such as PCT (p = 0.037), vWF:Ag (p < 0.001), Angpt-2 (p = 0.009), sTie-2 (p = 0.005)) along with a repletion of exhausted protective factors (such as AT-III (p = 0.026), Protein C (p = 0.012), ADAMTS-13 (p = 0.008)) could be observed in the TPE but not in the SOC group. In a multivariate mixed effects model, increasing baseline lactate levels led to greater NE dose reduction effects with TPE as opposed to SOC (p = 0.004). CONCLUSIONS: Adjunctive TPE is associated with the removal of injurious mediators and repletion of consumed protective factors altogether leading to preserved hemodynamic stabilization in refractory septic shock. We identified that baseline lactate concentration as a potential response predictor might guide future designing of large RCTs that will further evaluate TPE with regard to hard endpoints. Trial registration Retrospectively registered 18th January 2020 at clinicaltrials.gov (Identifier: NCT04231994 ).


Subject(s)
Sepsis , Shock, Septic , Shock , Humans , Lactates , Norepinephrine/therapeutic use , Plasma Exchange/methods , Sepsis/therapy , Shock/therapy , Shock, Septic/therapy
17.
Crit Care ; 26(1): 190, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35765102

ABSTRACT

BACKGROUND: Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients. METHODS: 673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival. RESULTS: Most patients were between 50 and 70 years of age. PaO2/FiO2 ratio prior to ECMO was 72 mmHg (IQR: 58-99). ICU survival was 31.4%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42%) patients fulfilling modified EOLIA criteria had a higher survival (38%) (p = 0.0014, OR 0.64 (CI 0.41-0.99)). Survival differed between low, intermediate, and high-volume centers with 20%, 30%, and 38%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28-1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events. CONCLUSIONS: Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival. TRIAL REGISTRATION: Registered in the German Clinical Trials Register (study ID: DRKS00022964, retrospectively registered, September 7th 2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00022964 .


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Intensive Care Units , Pandemics , Respiratory Distress Syndrome/therapy , Survival Analysis
18.
Am J Respir Crit Care Med ; 204(1): 53-63, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33760701

ABSTRACT

Rationale: Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome with a mortality of up to 40%. Precision medicine approaches targeting patients on the basis of their molecular phenotypes of ARDS might help to identify effective pharmacotherapies. The inflammasome-caspase-1 pathway contributes to the development of ARDS via IL-1ß and IL-18 production. Recent studies indicate that tetracycline can be used to treat inflammatory diseases mediated by IL-1ß and IL-18, although the molecular mechanism by which tetracycline inhibits inflammasome-caspase-1 signaling remains unknown. Objectives: To identify patients with ARDS characterized by IL-1ß and IL-18 expression and investigate the ability of tetracycline to inhibit inflammasome-caspase-1 signaling in ARDS. Methods: IL-1ß and IL-18 concentrations were quantified in BAL fluid from patients with ARDS. Tetracycline's effects on lung injury and inflammation were assessed in two mouse models of direct (pulmonary) acute lung injury, and its effects on IL-1ß and IL-18 production were assessed by alveolar leukocytes from patients with direct ARDS ex vivo. Murine macrophages were used to further characterize the effect of tetracycline on the inflammasome-caspase-1 pathway. Measurements and Main Results: BAL fluid concentrations of IL-1ß and IL-18 are significantly higher in patients with direct ARDS than those with indirect (nonpulmonary) ARDS. In experimental acute lung injury, tetracycline significantly diminished lung injury and pulmonary inflammation by selectively inhibiting caspase-1-dependent IL-1ß and IL-18 production, leading to improved survival. Tetracycline also reduced the production of IL-1ß and IL-18 by alveolar leukocytes from patients with direct ARDS. Conclusions: Tetracycline may be effective in the treatment of direct ARDS in patients with elevated caspase-1 activity. Clinical Trial registered with www.clinicaltrials.gov (NCT04079426).


Subject(s)
Acute Lung Injury/prevention & control , Caspase 1/metabolism , Inflammasomes/metabolism , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/genetics , Tetracycline/metabolism , Acute Lung Injury/etiology , Animals , Anti-Bacterial Agents/metabolism , Enzyme Inhibitors/metabolism , Humans , Immunomodulation , Interleukin-18/genetics , Interleukin-1beta/genetics , Mice , Models, Animal , Respiratory Distress Syndrome/physiopathology
19.
Thorac Cardiovasc Surg ; 70(7): 549-557, 2022 10.
Article in English | MEDLINE | ID: mdl-32886926

ABSTRACT

BACKGROUND: Heart surgery with extracorporeal circulation (ECC) often leads to postoperative delirium (POD). This is associated with increased morbidity resulting in longer hospital stay and associated costs. The purpose of our study was to analyze the effect of intraoperative mannitol application on POD in patients undergoing elective aortic valve replacement (AVR). MATERIALS AND METHOD: s In our retrospective single-center study, 259 patients underwent elective AVR, using Bretschneider cardioplegic solution for cardiac arrest, between 2014 and 2017. Patients were divided in mannitol (n = 188) and nonmannitol (n = 71) groups. POD was assessed using the confusion assessment method for the intensive care unit (ICU). Statistical significance was assumed at p < 0.05. RESULTS: Baseline patient characteristics did not differ between the groups. Incidence of POD was significantly higher in the nonmannitol group (33.8 vs. 13.8%; p = 0.001). These patients required longer ventilation time (24.1 vs. 17.1 hours; p = 0.021), higher reintubation rate (11.3 vs. 2.7%; p = 0.009), ICU readmission (12.7 vs. 4.8%; p = 0.026), prolonged ICU (112 vs. 70 hours; p = 0.040), and hospital stay (17.8 vs. 12.6 days; p < 0.001), leading to higher expenses (19,349 € vs. 16,606 €, p < 0.001). A 30-day mortality was not affected, but nonmannitol group showed higher Simplified Acute Physiology Score II score (32.2 vs. 28.7; p < 0.001). Mannitol substitution was independently associated with lower incidence of POD (odds ratio: 0.40; 95% confidence interval: 0.18-0.89; p = 0.02). CONCLUSION: Treatment with mannitol during ECC was associated with decreased incidence of POD. This was accompanied by shorter ventilation time, ICU and hospital stay, and lower treatment expenses.


Subject(s)
Aortic Valve , Delirium , Aortic Valve/surgery , Delirium/diagnosis , Delirium/etiology , Delirium/prevention & control , Heart Arrest, Induced/adverse effects , Humans , Mannitol/adverse effects , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Retrospective Studies , Risk Factors , Treatment Outcome
20.
BMC Anesthesiol ; 22(1): 12, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34986787

ABSTRACT

BACKGROUND: The COVID-19 pandemic has taken a toll on health care systems worldwide, which has led to increased mortality of different diseases like myocardial infarction. This is most likely due to three factors. First, an increased workload per nurse ratio, a factor associated with mortality. Second, patients presenting with COVID-19-like symptoms are isolated, which also decreases survival in cases of emergency. And third, patients hesitate to see a doctor or present themselves at a hospital. To assess if this is also true for sepsis patients, we asked whether non-COVID-19 sepsis patients had an increased 30-day mortality during the COVID-19 pandemic. METHODS: This is a post hoc analysis of the SepsisDataNet.NRW study, a multicentric, prospective study that includes septic patients fulfilling the SEPSIS-3 criteria. Within this study, we compared the 30-day mortality and disease severity of patients recruited pre-pandemic (recruited from March 2018 until February 2020) with non-COVID-19 septic patients recruited during the pandemic (recruited from March 2020 till December 2020). RESULTS: Comparing septic patients recruited before the pandemic to those recruited during the pandemic, we found an increased raw 30-day mortality in sepsis-patients recruited during the pandemic (33% vs. 52%, p = 0.004). We also found a significant difference in the severity of disease at recruitment (SOFA score pre-pandemic: 8 (5 - 11) vs. pandemic: 10 (8 - 13); p < 0.001). When adjusted for this, the 30-day mortality rates were not significantly different between the two groups (52% vs. 52% pre-pandemic and pandemic, p = 0.798). CONCLUSIONS: This led us to believe that the higher mortality of non-COVID19 sepsis patients during the pandemic might be attributed to a more severe septic disease at the time of recruitment. We note that patients may experience a delayed admission, as indicated by elevated SOFA scores. This could explain the higher mortality during the pandemic and we found no evidence for a diminished quality of care for critically ill sepsis patients in German intensive care units.


Subject(s)
COVID-19/prevention & control , Pandemics , Sepsis/mortality , Time-to-Treatment/statistics & numerical data , Aged , Female , Germany/epidemiology , Humans , Male , Middle Aged , Patient Acuity , Prospective Studies , SARS-CoV-2 , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL