Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Cell ; 159(4): 800-13, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417157

ABSTRACT

We sequenced the MSY (male-specific region of the Y chromosome) of the C57BL/6J strain of the laboratory mouse Mus musculus. In contrast to theories that Y chromosomes are heterochromatic and gene poor, the mouse MSY is 99.9% euchromatic and contains about 700 protein-coding genes. Only 2% of the MSY derives from the ancestral autosomes that gave rise to the mammalian sex chromosomes. Instead, all but 45 of the MSY's genes belong to three acquired, massively amplified gene families that have no homologs on primate MSYs but do have acquired, amplified homologs on the mouse X chromosome. The complete mouse MSY sequence brings to light dramatic forces in sex chromosome evolution: lineage-specific convergent acquisition and amplification of X-Y gene families, possibly fueled by antagonism between acquired X-Y homologs. The mouse MSY sequence presents opportunities for experimental studies of a sex-specific chromosome in its entirety, in a genetically tractable model organism.


Subject(s)
Biological Evolution , Chromosomes, Mammalian , Mice, Inbred C57BL/genetics , Sequence Analysis, DNA , Y Chromosome , Animals , Centromere , Chromosomes, Artificial, Bacterial/genetics , Female , Humans , Male , Phylogeny , Primates/genetics , X Chromosome
2.
Genome Res ; 31(8): 1337-1352, 2021 08.
Article in English | MEDLINE | ID: mdl-34290043

ABSTRACT

Mammalian sex chromosomes carry large palindromes that harbor protein-coding gene families with testis-biased expression. However, there are few known examples of sex-chromosome palindromes conserved between species. We identified 26 palindromes on the human X Chromosome, constituting more than 2% of its sequence, and characterized orthologous palindromes in the chimpanzee and the rhesus macaque using a clone-based sequencing approach that incorporates full-length nanopore reads. Many of these palindromes are missing or misassembled in the current reference assemblies of these species' genomes. We find that 12 human X palindromes have been conserved for at least 25 million years, with orthologs in both chimpanzee and rhesus macaque. Insertions and deletions between species are significantly depleted within the X palindromes' protein-coding genes compared to their noncoding sequence, demonstrating that natural selection has preserved these gene families. The spacers that separate the left and right arms of palindromes are a site of localized structural instability, with seven of 12 conserved palindromes showing no spacer orthology between human and rhesus macaque. Analysis of the 1000 Genomes Project data set revealed that human X-palindrome spacers are enriched for deletions relative to arms and flanking sequence, including a common spacer deletion that affects 13% of human X Chromosomes. This work reveals an abundance of conserved palindromes on primate X Chromosomes and suggests that protein-coding gene families in palindromes (most of which remain poorly characterized) promote X-palindrome survival in the face of ongoing structural instability.


Subject(s)
Selection, Genetic , X Chromosome , Animals , Macaca mulatta/genetics , Male , Pan troglodytes/genetics , Sex Chromosomes , X Chromosome/genetics
3.
Genome Res ; 30(12): 1716-1726, 2020 12.
Article in English | MEDLINE | ID: mdl-33208454

ABSTRACT

Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.


Subject(s)
Sequence Analysis, DNA/veterinary , X Chromosome/genetics , Y Chromosome/genetics , Animals , Cattle , Cell Lineage , Crossing Over, Genetic , Evolution, Molecular , Female , Gene Amplification , Humans , Male , Mice , Organ Specificity , Testis/chemistry
4.
BMC Biol ; 20(1): 133, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35676717

ABSTRACT

BACKGROUND: The mammalian X and Y chromosomes originated from a pair of ordinary autosomes. Over the past ~180 million years, the X and Y have become highly differentiated and now only recombine with each other within a short pseudoautosomal region. While the X chromosome broadly preserved its gene content, the Y chromosome lost ~92% of the genes it once shared with the X chromosome. PRSSLY is a Y-linked gene identified in only a few mammalian species that was thought to be acquired, not ancestral. However, PRSSLY's presence in widely divergent species-bull and mouse-led us to further investigate its evolutionary history. RESULTS: We discovered that PRSSLY is broadly conserved across eutherians and has ancient origins. PRSSLY homologs are found in syntenic regions on the X chromosome in marsupials and on autosomes in more distant animals, including lizards, indicating that PRSSLY was present on the ancestral autosomes but was lost from the X and retained on the Y in eutherian mammals. We found that across eutheria, PRSSLY's expression is testis-specific, and, in mouse, it is most robustly expressed in post-meiotic germ cells. The closest paralog to PRSSLY is the autosomal gene PRSS55, which is expressed exclusively in testes, involved in sperm differentiation and migration, and essential for male fertility in mice. Outside of eutheria, in species where PRSSLY orthologs are not Y-linked, we find expression in a broader range of somatic tissues, suggesting that PRSSLY has adopted a germ-cell-specific function in eutherians. Finally, we generated Prssly mutant mice and found that they are fully fertile but produce offspring with a modest female-biased sex ratio compared to controls. CONCLUSIONS: PRSSLY appears to be the first example of a gene that derives from the mammalian ancestral sex chromosomes that was lost from the X and retained on the Y. Although the function of PRSSLY remains to be determined, it may influence the sex ratio by promoting the survival or propagation of Y-bearing sperm.


Subject(s)
Eutheria , Y Chromosome , Animals , Cattle , Eutheria/genetics , Female , Male , Mammals/genetics , Mice , Sex Chromosomes/genetics , X Chromosome/genetics , Y Chromosome/genetics
5.
Am J Hum Genet ; 103(2): 261-275, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30075113

ABSTRACT

Amplicons-large, highly identical segmental duplications-are a prominent feature of mammalian Y chromosomes. Although they encode genes essential for fertility, these amplicons differ vastly between species, and little is known about the selective constraints acting on them. Here, we develop computational tools to detect amplicon copy number with unprecedented accuracy from high-throughput sequencing data. We find that one-sixth (16.9%) of 1,216 males from the 1000 Genomes Project have at least one deleted or duplicated amplicon. However, each amplicon's reference copy number is scrupulously maintained among divergent branches of the Y chromosome phylogeny, including the ancient branch A00, indicating that the reference copy number is ancestral to all modern human Y chromosomes. Using phylogenetic analyses and simulations, we demonstrate that this pattern of variation is incompatible with neutral evolution and instead displays hallmarks of mutation-selection balance. We also observe cases of amplicon rescue, in which deleted amplicons are restored through subsequent duplications. These results indicate that, contrary to the lack of constraint suggested by the differences between species, natural selection has suppressed amplicon copy number variation in diverse human lineages.


Subject(s)
Chromosomes, Human, Y/genetics , DNA Copy Number Variations/genetics , Selection, Genetic/genetics , Animals , Cell Line , Evolution, Molecular , Gene Dosage/genetics , Gene Duplication/genetics , Genome/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Phylogeny
6.
Nature ; 508(7497): 494-9, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24759411

ABSTRACT

The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.


Subject(s)
Evolution, Molecular , Gene Dosage/genetics , Mammals/genetics , Y Chromosome/genetics , Animals , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Disease , Female , Gene Expression Regulation , Health , Humans , Male , Marsupialia/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Protein Biosynthesis/genetics , Protein Stability , Selection, Genetic/genetics , Sequence Homology , Sex Characteristics , Spermatogenesis/genetics , Testis/metabolism , Transcription, Genetic/genetics , Turner Syndrome/genetics , X Chromosome/genetics
7.
Nature ; 483(7387): 82-6, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22367542

ABSTRACT

The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.


Subject(s)
Chromosomes, Human, Y/genetics , Conserved Sequence/genetics , Evolution, Molecular , Gene Deletion , Macaca mulatta/genetics , Y Chromosome/genetics , Animals , Crossing Over, Genetic/genetics , Gene Amplification/genetics , Humans , In Situ Hybridization, Fluorescence , Male , Models, Genetic , Molecular Sequence Data , Pan troglodytes/genetics , Radiation Hybrid Mapping , Selection, Genetic/genetics , Time Factors
8.
Nature ; 466(7306): 612-6, 2010 Jul 29.
Article in English | MEDLINE | ID: mdl-20622855

ABSTRACT

In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex--the W and Y chromosomes. By contrast, the sex chromosomes found in both sexes--the Z and X chromosomes--are assumed to have diverged little from their autosomal progenitors. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.


Subject(s)
Chickens/genetics , Chromosomes, Human, X/genetics , Evolution, Molecular , Genes/genetics , Sex Chromosomes/genetics , Animals , Female , Gene Deletion , Genome/genetics , Humans , Male , Multigene Family/genetics , Sex Characteristics , Testis/metabolism
9.
Nature ; 463(7280): 536-9, 2010 Jan 28.
Article in English | MEDLINE | ID: mdl-20072128

ABSTRACT

The human Y chromosome began to evolve from an autosome hundreds of millions of years ago, acquiring a sex-determining function and undergoing a series of inversions that suppressed crossing over with the X chromosome. Little is known about the recent evolution of the Y chromosome because only the human Y chromosome has been fully sequenced. Prevailing theories hold that Y chromosomes evolve by gene loss, the pace of which slows over time, eventually leading to a paucity of genes, and stasis. These theories have been buttressed by partial sequence data from newly emergent plant and animal Y chromosomes, but they have not been tested in older, highly evolved Y chromosomes such as that of humans. Here we finished sequencing of the male-specific region of the Y chromosome (MSY) in our closest living relative, the chimpanzee, achieving levels of accuracy and completion previously reached for the human MSY. By comparing the MSYs of the two species we show that they differ radically in sequence structure and gene content, indicating rapid evolution during the past 6 million years. The chimpanzee MSY contains twice as many massive palindromes as the human MSY, yet it has lost large fractions of the MSY protein-coding genes and gene families present in the last common ancestor. We suggest that the extraordinary divergence of the chimpanzee and human MSYs was driven by four synergistic factors: the prominent role of the MSY in sperm production, 'genetic hitchhiking' effects in the absence of meiotic crossing over, frequent ectopic recombination within the MSY, and species differences in mating behaviour. Although genetic decay may be the principal dynamic in the evolution of newly emergent Y chromosomes, wholesale renovation is the paramount theme in the continuing evolution of chimpanzee, human and perhaps other older MSYs.


Subject(s)
Chromosomes, Human, Y/genetics , Genes/genetics , Nucleic Acid Conformation , Pan troglodytes/genetics , Y Chromosome/genetics , Animals , Chromosomes, Human, Pair 21/genetics , DNA/chemistry , DNA/genetics , Humans , Male , Molecular Sequence Data , Sequence Homology, Nucleic Acid
10.
Nat Genet ; 38(4): 463-7, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16501575

ABSTRACT

Although much structural polymorphism in the human genome has been catalogued, the kinetics of underlying change remain largely unexplored. Because human Y chromosomes are clonally inherited, it has been possible to capture their detailed relationships in a robust, worldwide genealogical tree. Examination of structural variation across this tree opens avenues for investigating rates of underlying mutations. We selected one Y chromosome from each of 47 branches of this tree and searched for large-scale variation. Four chromosomal regions showed extensive variation resulting from numerous large-scale mutations. Within the tree encompassed by the studied chromosomes, the distal-Yq heterochromatin changed length > or = 12 times, the TSPY gene array changed length > or = 23 times, the 3.6-Mb IR3/IR3 region changed orientation > or = 12 times and the AZFc region was rearranged > or = 20 times. After determining the total time spanned by all branches of this tree (approximately 1.3 million years or 52,000 generations), we converted these mutation counts to lower bounds on rates: > or = 2.3 x 10(-4), > or = 4.4 x 10(-4), > or = 2.3 x 10(-4) and > or = 3.8 x 10(-4) large-scale mutations per father-to-son Y transmission, respectively. Thus, high mutation rates have driven extensive structural polymorphism among human Y chromosomes. At the same time, we found limited variation in the copy number of Y-linked genes, which raises the possibility of selective constraints.


Subject(s)
Chromosomes, Human, Y , Mutation , Polymorphism, Genetic , Humans , In Situ Hybridization, Fluorescence , Molecular Sequence Data
11.
Cell Genom ; 4(1): 100462, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38190107

ABSTRACT

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors-ZFX and ZFY-encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.


Subject(s)
Transcription Factors , Y Chromosome , Humans , Male , Female , Transcription Factors/genetics , Chromosomes, Human, X/genetics , Sex Chromosome Aberrations , Gene Expression/genetics
12.
Nat Genet ; 35(3): 247-51, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14528305

ABSTRACT

Many human Y-chromosomal deletions are thought to severely impair reproductive fitness, which precludes their transmission to the next generation and thus ensures their rarity in the population. Here we report a 1.6-Mb deletion that persists over generations and is sufficiently common to be considered a polymorphism. We hypothesized that this deletion might affect spermatogenesis because it removes almost half of the Y chromosome's AZFc region, a gene-rich segment that is critical for sperm production. An association study established that this deletion, called gr/gr, is a significant risk factor for spermatogenic failure. The gr/gr deletion has far lower penetrance with respect to spermatogenic failure than previously characterized Y-chromosomal deletions; it is often transmitted from father to son. By studying the distribution of gr/gr-deleted chromosomes across the branches of the Y chromosome's genealogical tree, we determined that this deletion arose independently at least 14 times in human history. We suggest that the existence of this deletion as a polymorphism reflects a balance between haploid selection, which culls gr/gr-deleted Y chromosomes from the population, and homologous recombination, which continues to generate new gr/gr deletions.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Y , Haploidy , Mutation , Polymorphism, Genetic , Humans , Male , Molecular Sequence Data
13.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333288

ABSTRACT

Somatic cells of human males and females have 45 chromosomes in common, including the "active" X chromosome. In males the 46th chromosome is a Y; in females it is an "inactive" X (Xi). Through linear modeling of autosomal gene expression in cells from individuals with zero to three Xi and zero to four Y chromosomes, we found that Xi and Y impact autosomal expression broadly and with remarkably similar effects. Studying sex-chromosome structural anomalies, promoters of Xi- and Y-responsive genes, and CRISPR inhibition, we traced part of this shared effect to homologous transcription factors - ZFX and ZFY - encoded by Chr X and Y. This demonstrates sex-shared mechanisms by which Xi and Y modulate autosomal expression. Combined with earlier analyses of sex-linked gene expression, our studies show that 21% of all genes expressed in lymphoblastoid cells or fibroblasts change expression significantly in response to Xi or Y chromosomes.

14.
Nature ; 437(7055): 100-3, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16136134

ABSTRACT

The human Y chromosome, transmitted clonally through males, contains far fewer genes than the sexually recombining autosome from which it evolved. The enormity of this evolutionary decline has led to predictions that the Y chromosome will be completely bereft of functional genes within ten million years. Although recent evidence of gene conversion within massive Y-linked palindromes runs counter to this hypothesis, most unique Y-linked genes are not situated in palindromes and have no gene conversion partners. The 'impending demise' hypothesis thus rests on understanding the degree of conservation of these genes. Here we find, by systematically comparing the DNA sequences of unique, Y-linked genes in chimpanzee and human, which diverged about six million years ago, evidence that in the human lineage, all such genes were conserved through purifying selection. In the chimpanzee lineage, by contrast, several genes have sustained inactivating mutations. Gene decay in the chimpanzee lineage might be a consequence of positive selection focused elsewhere on the Y chromosome and driven by sperm competition.


Subject(s)
Chromosomes, Human, Y/genetics , Conserved Sequence/genetics , Evolution, Molecular , Genetic Linkage/genetics , Pan troglodytes/genetics , Y Chromosome/genetics , Animals , Euchromatin/genetics , Humans , Introns/genetics , Male , Models, Genetic , Molecular Sequence Data , Phylogeny , Pseudogenes/genetics , Sequence Alignment , Sequence Analysis, DNA , X Chromosome/genetics
15.
G3 (Bethesda) ; 9(5): 1481-1486, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30837263

ABSTRACT

The introduction of foreign DNA into cells and organisms has facilitated much of modern biological research, and it promises to become equally important in clinical practice. Locating sites of foreign DNA incorporation in mammalian genomes has proven burdensome, so the genomic location of most transgenes remains unknown. To address this challenge, we applied nanopore sequencing in search of the site of integration of Tg(Pou5f1-EGFP)2Mnn (also known as Oct4:EGFP), a widely used fluorescent reporter in mouse germ line research. Using this nanopore-based approach, we identified the site of Oct4:EGFP transgene integration near the telomere of Chromosome 9. This methodology simultaneously yielded an estimate of transgene copy number, provided direct evidence of transgene inversions, revealed contaminating E. coli genomic DNA within the transgene array, validated the integrity of neighboring genes, and enabled definitive genotyping. We suggest that such an approach provides a rapid, cost-effective method for identifying and analyzing transgene integration sites.


Subject(s)
High-Throughput Nucleotide Sequencing , Mutagenesis, Insertional , Transgenes , Animals , Base Sequence , Fibroblasts , Genes, Reporter , Germ Cells/metabolism , In Situ Hybridization, Fluorescence , Mice , Nanopores
16.
Nat Genet ; 51(4): 705-715, 2019 04.
Article in English | MEDLINE | ID: mdl-30833795

ABSTRACT

Cancer genomes are frequently characterized by numerical and structural chromosomal abnormalities. Here we integrated a centromere-specific inactivation approach with selection for a conditionally essential gene, a strategy termed CEN-SELECT, to systematically interrogate the structural landscape of mis-segregated chromosomes. We show that single-chromosome mis-segregation into a micronucleus can directly trigger a broad spectrum of genomic rearrangement types. Cytogenetic profiling revealed that mis-segregated chromosomes exhibit 120-fold-higher susceptibility to developing seven major categories of structural aberrations, including translocations, insertions, deletions, and complex reassembly through chromothripsis coupled to classical non-homologous end joining. Whole-genome sequencing of clonally propagated rearrangements identified random patterns of clustered breakpoints with copy-number alterations resulting in interspersed gene deletions and extrachromosomal DNA amplification events. We conclude that individual chromosome segregation errors during mitotic cell division are sufficient to drive extensive structural variations that recapitulate genomic features commonly associated with human disease.


Subject(s)
Chromosome Segregation/genetics , Gene Rearrangement/genetics , Animals , Cells, Cultured , Chromosome Aberrations , DNA Copy Number Variations/genetics , Genome, Human/genetics , Genomics/methods , HEK293 Cells , Humans , Neoplasms/genetics , Translocation, Genetic/genetics , Whole Genome Sequencing/methods , Xenopus laevis/genetics
17.
Nat Genet ; 49(3): 387-394, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28135246

ABSTRACT

After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line.


Subject(s)
Birds/genetics , Gene Dosage/genetics , Mammals/genetics , Transcription Factors/genetics , Y Chromosome/genetics , Animals , Evolution, Molecular , Female , Humans , Male , Sex Determination Processes/genetics , X Chromosome/genetics
18.
Genome Biol ; 16: 104, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26017895

ABSTRACT

BACKGROUND: Although the mammalian X and Y chromosomes evolved from a single pair of autosomes, they are highly differentiated: the Y chromosome is dramatically smaller than the X and has lost most of its genes. The surviving genes are a specialized set with extraordinary evolutionary longevity. Most mammalian lineages have experienced delayed, or relatively recent, loss of at least one conserved Y-linked gene. An extreme example of this phenomenon is in the Japanese spiny rat, where the Y chromosome has disappeared altogether. In this species, many Y-linked genes were rescued by transposition to new genomic locations, but until our work presented here, this has been considered an isolated case. RESULTS: We describe eight cases of genes that have relocated to autosomes in mammalian lineages where the corresponding Y-linked gene has been lost. These gene transpositions originated from either the X or Y chromosomes, and are observed in diverse mammalian lineages: occurring at least once in marsupials, apes, and cattle, and at least twice in rodents and marmoset. For two genes--EIF1AX/Y and RPS4X/Y--transposition to autosomes occurred independently in three distinct lineages. CONCLUSIONS: Rescue of Y-linked gene loss through transposition to autosomes has previously been reported for a single isolated rodent species. However, our findings indicate that this compensatory mechanism is widespread among mammalian species. Thus, Y-linked gene loss emerges as an additional driver of gene transposition from the sex chromosomes, a phenomenon thought to be driven primarily by meiotic sex chromosome inactivation.


Subject(s)
Gene Deletion , Mammals/genetics , Sex Chromosome Aberrations , Translocation, Genetic , Y Chromosome/genetics , Animals , Cattle , Eukaryotic Initiation Factor-1/genetics , Eukaryotic Initiation Factor-1/metabolism , Genomics , Humans , In Situ Hybridization, Fluorescence , Mice , Opossums , Pan troglodytes , Phylogeny , Rats , Sequence Alignment , Sequence Analysis, RNA , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/metabolism
19.
Nat Biotechnol ; 31(6): 530-2, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23666012

ABSTRACT

The functional study of Y chromosome genes has been hindered by a lack of mouse models with specific Y chromosome mutations. We used transcription activator-like effector nuclease (TALEN)-mediated gene editing in mouse embryonic stem cells (mESCs) to produce mice with targeted gene disruptions and insertions in two Y-linked genes--Sry and Uty. TALEN-mediated gene editing is a useful tool for dissecting the biology of the Y chromosome.


Subject(s)
Endonucleases/genetics , Proteins/genetics , SOXB2 Transcription Factors/genetics , Y Chromosome/genetics , Animals , Embryonic Stem Cells/metabolism , Endonucleases/metabolism , Gene Targeting , Genes, Y-Linked , Mice , Minor Histocompatibility Antigens , Mutation , SOXB2 Transcription Factors/metabolism
20.
Nature ; 423(6942): 825-37, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12815422

ABSTRACT

The male-specific region of the Y chromosome, the MSY, differentiates the sexes and comprises 95% of the chromosome's length. Here, we report that the MSY is a mosaic of heterochromatic sequences and three classes of euchromatic sequences: X-transposed, X-degenerate and ampliconic. These classes contain all 156 known transcription units, which include 78 protein-coding genes that collectively encode 27 distinct proteins. The X-transposed sequences exhibit 99% identity to the X chromosome. The X-degenerate sequences are remnants of ancient autosomes from which the modern X and Y chromosomes evolved. The ampliconic class includes large regions (about 30% of the MSY euchromatin) where sequence pairs show greater than 99.9% identity, which is maintained by frequent gene conversion (non-reciprocal transfer). The most prominent features here are eight massive palindromes, at least six of which contain testis genes.


Subject(s)
Chromosomes, Human, Y/genetics , Evolution, Molecular , Sex Determination Processes , Transducin , Chromosomes, Human, X/genetics , Crossing Over, Genetic/genetics , DNA Transposable Elements/genetics , Euchromatin/genetics , Female , Gene Amplification/genetics , Gene Conversion/genetics , Genes/genetics , Heterochromatin/genetics , Humans , In Situ Hybridization, Fluorescence , Male , Models, Genetic , Multigene Family/genetics , Organ Specificity , Pseudogenes/genetics , Sequence Homology, Nucleic Acid , Sex Characteristics , Species Specificity , Testis/metabolism , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL