Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Environ Manage ; 344: 118380, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37329585

ABSTRACT

The unexpected failure of equipment such as pumps and fans in wastewater treatment plants can reduce wastewater treatment efficiency, leading to direct leakage of untreated wastewater into the environment. It is hence important to predict the possible consequences of equipment failure to minimize the leakage of harmful substances. This study examines the impacts of equipment shutdown on the performance and recovery time of a laboratory-scale anaerobic/anoxic/aerobic system with regard to reactor conditions and water quality. Two days after the air blowers are stopped, the concentrations of the soluble chemical oxygen demand, NH4-N, and PO4-P in the effluent of the settling tank increase to 122 mg/L, 23.8 mg/L, and 46.6 mg/L, respectively. These concentrations return to their initial values after 12, 24, and 48 h of restarting the air blowers. The concentrations of PO4-P and NO3-N in the effluent increase to 58 mg/L and 20 mg/L, respectively, about 24 h after stopping the return activated sludge and mixed liquor recirculation pumps, owing to the release of phosphates in the settling tank and inhibition of denitrification.


Subject(s)
Waste Disposal, Fluid , Water Purification , Bioreactors , Wastewater , Sewage , Nitrogen
2.
Environ Sci Pollut Res Int ; 26(2): 1094-1102, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28432627

ABSTRACT

Inorganic fouling on the membrane surface is one of the major prevalent issues affecting the performance and cost of reverse osmosis system. Chemical dosage is a widely adopted method for the inhibition of inorganic scale on the membrane surface. In this study, CO2 was used to control inorganic scale formation on surface of reverse osmosis (RO) membrane in wastewater reclamation. The pH of influent could be lowered by purging CO2. It caused an increase in solubility of inorganic salts in water resulting in discharge of principle ions in concentrate stream. A pilot plant study was conducted with four different RO modules including control, with dosage of antiscalant, with purging CO2 and with co-addition of antiscalant and CO2. The effectiveness of CO2 purging was assessed on the basis of operational analysis, in-line analysis and morphological results. Ryznar stability index was used to determine the scaling potential of system. The examined data indicated that CO2 purging was successful to inhibit scale formation on the membrane surface. Moreover, CO2 was found more eco-friendly than antiscalant, as no by-products were generated in concentrate stream.


Subject(s)
Biofouling/prevention & control , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods , Carbon Dioxide , Hydrogen-Ion Concentration , Membranes, Artificial , Osmosis , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL