Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Cell ; 179(1): 147-164.e20, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31539493

ABSTRACT

Long-distance RNA transport enables local protein synthesis at metabolically-active sites distant from the nucleus. This process ensures an appropriate spatial organization of proteins, vital to polarized cells such as neurons. Here, we present a mechanism for RNA transport in which RNA granules "hitchhike" on moving lysosomes. In vitro biophysical modeling, live-cell microscopy, and unbiased proximity labeling proteomics reveal that annexin A11 (ANXA11), an RNA granule-associated phosphoinositide-binding protein, acts as a molecular tether between RNA granules and lysosomes. ANXA11 possesses an N-terminal low complexity domain, facilitating its phase separation into membraneless RNA granules, and a C-terminal membrane binding domain, enabling interactions with lysosomes. RNA granule transport requires ANXA11, and amyotrophic lateral sclerosis (ALS)-associated mutations in ANXA11 impair RNA granule transport by disrupting their interactions with lysosomes. Thus, ANXA11 mediates neuronal RNA transport by tethering RNA granules to actively-transported lysosomes, performing a critical cellular function that is disrupted in ALS.


Subject(s)
Annexins/metabolism , Axonal Transport/physiology , Cytoplasmic Granules/metabolism , Lysosomes/metabolism , RNA/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , Animals, Genetically Modified , Annexins/genetics , Axons/metabolism , Cell Line, Tumor , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mutation , Protein Binding , Rats/embryology , Rats, Sprague-Dawley , Transfection , Zebrafish
2.
Cell ; 173(3): 720-734.e15, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677515

ABSTRACT

Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation. Indeed, significant hypomethylation, which occurs in FUS-associated frontotemporal lobar degeneration (FTLD), induces FUS condensation into stable intermolecular ß-sheet-rich hydrogels that disrupt RNP granule function and impair new protein synthesis in neuron terminals. We show that transportin acts as a physiological molecular chaperone of FUS in neuron terminals, reducing phase separation and gelation of methylated and hypomethylated FUS and rescuing protein synthesis. These results demonstrate how FUS condensation is physiologically regulated and how perturbations in these mechanisms can lead to disease.


Subject(s)
Arginine/chemistry , Molecular Chaperones/chemistry , RNA-Binding Protein FUS/chemistry , Amyotrophic Lateral Sclerosis/metabolism , Animals , Cations , DNA Methylation , Frontotemporal Dementia/metabolism , Frontotemporal Lobar Degeneration/metabolism , Humans , Microscopy, Atomic Force , Microscopy, Fluorescence , Protein Binding , Protein Domains , Protein Processing, Post-Translational , Protein Structure, Secondary , RNA-Binding Protein FUS/metabolism , Tyrosine/chemistry , Xenopus laevis
3.
Proc Natl Acad Sci U S A ; 120(33): e2301366120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549257

ABSTRACT

A wide range of macromolecules can undergo phase separation, forming biomolecular condensates in living cells. These membraneless organelles are typically highly dynamic, formed reversibly, and carry out essential functions in biological systems. Crucially, however, a further liquid-to-solid transition of the condensates can lead to irreversible pathological aggregation and cellular dysfunction associated with the onset and development of neurodegenerative diseases. Despite the importance of this liquid-to-solid transition of proteins, the mechanism by which it is initiated in normally functional condensates is unknown. Here we show, by measuring the changes in structure, dynamics, and mechanics in time and space, that single-component FUS condensates do not uniformly convert to a solid gel, but rather that liquid and gel phases coexist simultaneously within the same condensate, resulting in highly inhomogeneous structures. Furthermore, our results show that this transition originates at the interface between the condensate and the dilute continuous phase, and once initiated, the gelation process propagates toward the center of the condensate. To probe such spatially inhomogeneous rheology during condensate aging, we use a combination of established micropipette aspiration experiments together with two optical techniques, spatial dynamic mapping and reflective confocal dynamic speckle microscopy. These results reveal the importance of the spatiotemporal dimension of the liquid-to-solid transition and highlight the interface of biomolecular condensates as a critical element in driving pathological protein aggregation.


Subject(s)
Biomolecular Condensates , Protein Aggregation, Pathological , Humans , Microscopy, Confocal , Rheology , RNA-Binding Protein FUS
4.
J Neurosci ; 44(27)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38692734

ABSTRACT

Aberrant condensation and localization of the RNA-binding protein (RBP) fused in sarcoma (FUS) occur in variants of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Changes in RBP function are commonly associated with changes in axonal cytoskeletal organization and branching in neurodevelopmental disorders. Here, we asked whether branching defects also occur in vivo in a model of FUS-associated disease. We use two reported Xenopus models of ALS/FTD (of either sex), the ALS-associated mutant FUS(P525L) and a mimic of hypomethylated FUS, FUS(16R). Both mutants strongly reduced axonal complexity in vivo. We also observed an axon looping defect for FUS(P525L) in the target area, which presumably arises due to errors in stop cue signaling. To assess whether the loss of axon complexity also had a cue-independent component, we assessed axonal cytoskeletal integrity in vitro. Using a novel combination of fluorescence and atomic force microscopy, we found that mutant FUS reduced actin density in the growth cone, altering its mechanical properties. Therefore, FUS mutants may induce defects during early axonal development.


Subject(s)
Amyotrophic Lateral Sclerosis , Axons , Frontotemporal Dementia , Mutation , RNA-Binding Protein FUS , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Axons/pathology , Axons/metabolism , Animals , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/metabolism , Female , Male , Xenopus laevis , Growth Cones/metabolism , Humans , Disease Models, Animal
5.
J Biol Chem ; 296: 100631, 2021.
Article in English | MEDLINE | ID: mdl-33823153

ABSTRACT

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aß and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aß oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aß oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aß oligomerization and disaggregated preformed Aß oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aß fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aß-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aß but rather promotes Aß protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aß-induced release of sTREM2, which blocks Aß aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aß aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Membrane Glycoproteins/physiology , Mutant Proteins/metabolism , Mutation , Neurons/pathology , Neurotoxicity Syndromes/pathology , Receptors, Immunologic/physiology , Alzheimer Disease , Amyloid/metabolism , Animals , Mice , Mice, Knockout , Mutant Proteins/genetics , Neurons/metabolism , Neurotoxicity Syndromes/etiology
6.
Alzheimers Dement ; 18(2): 318-338, 2022 02.
Article in English | MEDLINE | ID: mdl-34057756

ABSTRACT

INTRODUCTION: The second most common form of early-onset dementia-frontotemporal dementia (FTD)-is often characterized by the aggregation of the microtubule-associated protein tau. Here we studied the mechanism of tau-induced neuronal dysfunction in neurons with the FTD-related 10+16 MAPT mutation. METHODS: Live imaging, electrophysiology, and redox proteomics were used in 10+16 induced pluripotent stem cell-derived neurons and a model of tau spreading in primary cultures. RESULTS: Overproduction of mitochondrial reactive oxygen species (ROS) in 10+16 neurons alters the trafficking of specific glutamate receptor subunits via redox regulation. Increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors containing GluA1 and NR2B subunits leads to impaired glutamatergic signaling, calcium overload, and excitotoxicity. Mitochondrial antioxidants restore the altered response and prevent neuronal death. Importantly, extracellular 4R tau induces the same pathological response in healthy neurons, thus proposing a mechanism for disease propagation. DISCUSSION: These results demonstrate mitochondrial ROS modulate glutamatergic signaling in FTD, and suggest a new therapeutic strategy.


Subject(s)
Frontotemporal Dementia , Induced Pluripotent Stem Cells , Frontotemporal Dementia/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mitochondria , Neurons/metabolism , Reactive Oxygen Species/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , tau Proteins/metabolism
7.
Glia ; 69(12): 2917-2932, 2021 12.
Article in English | MEDLINE | ID: mdl-34427354

ABSTRACT

Rare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid ß peptides (Aß). Aß peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aß variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aß affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aß, and that phosphorylation of Aß increases this interaction. Phosphorylation of Aß also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aß variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aß species in preclinical models of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microglia/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
8.
Hum Mol Genet ; 28(R2): R187-R196, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31595953

ABSTRACT

Recent work on the biophysics of proteins with low complexity, intrinsically disordered domains that have the capacity to form biological condensates has profoundly altered the concepts about the pathogenesis of inherited and sporadic neurodegenerative disorders associated with pathological accumulation of these proteins. In the present review, we use the FUS, TDP-43 and A11 proteins as examples to illustrate how missense mutations and aberrant post-translational modifications of these proteins cause amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD).


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Annexins/genetics , DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/genetics , RNA-Binding Protein FUS/chemistry , Temporal Lobe/physiopathology , Annexins/chemistry , Annexins/metabolism , Biological Transport/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Mutation, Missense , Neurodegenerative Diseases/physiopathology , Neurons/chemistry , Neurons/metabolism , Protein Processing, Post-Translational/genetics , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism
9.
J Contemp Dent Pract ; 21(9): 997-1001, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33568585

ABSTRACT

AIM: The aim of the study was to compare the platelet-rich fibrin (PRF) and titanium-prepared platelet-rich fibrin (T-PRF) in the management of endo-perio lesions. MATERIALS AND METHODS: This study was conducted with 140 patients who are affected by endo-perio lesions, and the patients were divided into two groups. In group I, patients were treated with PRF, and in group II, patients were treated with T-PRF. Endodontic treatment was done in all cases, following a standardized aseptic method. Probing pocket and relative attachment level were recorded after 3 months and 6 months in both groups. RESULTS: After 3 months, the mean change of probing pocket depth (PPD) was 68% in group I and 33.41% in group II. The intergroup distinction was not significant (p > 0.05), whereas the intragroup evaluation was significant (p < 0.05). The mean change after 6 months was 42.59% in group I and 43.90% in group II. The difference was not significant (p > 0.05). After 3 months, the mean% change of relative attachment level (RAL) was 31.20% in group I and 31.60% in group II. The intergroup distinction was not significant (p > 0.05), whereas the intragroup evaluation established a considerable discrepancy (p < 0.05). The mean change after 6 months was 40.82% in group I and 42.12% in group II. CONCLUSION: Both PRF and T-PRF were effective in inducing a reduction in pocket depth and useful in gaining attachment level. CLINICAL SIGNIFICANCE: With the use of PRF and T-PRF, the complex case of endo-perio lesions can be efficiently managed.


Subject(s)
Platelet-Rich Fibrin , Titanium , Humans
10.
BMC Biol ; 14(1): 109, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27927196

ABSTRACT

BACKGROUND: Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS: Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS: In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , Ethanolamines/chemistry , Mutation , Nuclear Proteins/genetics , Transcription Factors/genetics , Amino Acid Sequence , Carrier Proteins/chemistry , Carrier Proteins/genetics , Cell Line , Charcot-Marie-Tooth Disease/diagnosis , HeLa Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nuclear Proteins/chemistry , Protein Aggregation, Pathological , Protein Conformation , Transcription Factors/chemistry
11.
J Biol Chem ; 288(21): 15352-66, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23589300

ABSTRACT

γ-Secretase plays a pivotal role in the production of neurotoxic amyloid ß-peptides (Aß) in Alzheimer disease (AD) and consists of a heterotetrameric core complex that includes the aspartyl intramembrane protease presenilin (PS). The human genome codes for two presenilin paralogs. To understand the causes for distinct phenotypes of PS paralog-deficient mice and elucidate whether PS mutations associated with early-onset AD affect the molecular environment of mature γ-secretase complexes, quantitative interactome comparisons were undertaken. Brains of mice engineered to express wild-type or mutant PS1, or HEK293 cells stably expressing PS paralogs with N-terminal tandem-affinity purification tags served as biological source materials. The analyses revealed novel interactions of the γ-secretase core complex with a molecular machinery that targets and fuses synaptic vesicles to cellular membranes and with the H(+)-transporting lysosomal ATPase macrocomplex but uncovered no differences in the interactomes of wild-type and mutant PS1. The catenin/cadherin network was almost exclusively found associated with PS1. Another intramembrane protease, signal peptide peptidase, predominantly co-purified with PS2-containing γ-secretase complexes and was observed to influence Aß production.


Subject(s)
Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/immunology , Membrane Proteins/metabolism , Presenilin-2/metabolism , Serine Endopeptidases/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Cadherins/genetics , Cadherins/metabolism , Catenins/genetics , Catenins/metabolism , HEK293 Cells , Humans , Membrane Proteins/genetics , Mice , Mice, Transgenic , Mutation , Presenilin-2/genetics , Protein Binding/genetics , Serine Endopeptidases/genetics , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism
12.
Chembiochem ; 15(17): 2515-21, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25294384

ABSTRACT

Oligomers of the amyloid-ß peptide (Aß) play a central role in the pathogenesis of Alzheimer's disease and have been suggested to induce neurotoxicity by binding to a plethora of cell-surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by Aß42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single-molecule imaging to characterize Aß42 oligomers (oAß42) and to confirm the controversial interaction of oAß42 with the cellular prion protein (PrP(C)) on live neuronal cells. Our results show that, at nanomolar concentrations, oAß42 interacts with PrP(C) and that the species bound to PrP(C) are predominantly small oligomers (dimers and trimers). Single-molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor-mediated oAß-induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways.


Subject(s)
Amyloid beta-Peptides/metabolism , Molecular Imaging , Peptide Fragments/metabolism , PrPC Proteins/metabolism , Humans , Protein Binding , Tumor Cells, Cultured
13.
J Pharm Bioallied Sci ; 16(Suppl 1): S856-S858, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38595373

ABSTRACT

Background: Endodontic microbial flora plays a pivotal role in the development and persistence of periodontal endodontic lesions (PELs). Understanding the composition and prevalence of microbial species in PELs is essential for effective treatment strategies. Materials and Methods: Microbial samples were collected from 50 teeth diagnosed with PELs. Sterile paper points were used to obtain samples from the root canals. Deoxyribonucleic acid (DNA) was extracted and subjected to polymerase chain reaction (PCR) amplification of the 16S ribosomal RNA (rRNA) gene to identify bacterial species. The obtained data were analyzed using statistical methods. Results: The microbial analysis revealed a diverse range of bacterial species in PELs. The most prevalent species were Porphyromonas gingivalis (32.5%), Treponema denticola (28.0%), and Fusobacterium nucleatum (22.5%). Streptococcus mutans (9.0%) and Actinomyces naeslundii (8.0%) were also frequently detected. Additionally, Prevotella intermedia (7.0%), Aggregatibacter actinomycetemcomitans (3.5%), and Enterococcus faecalis (2.5%) were present in lower frequencies. Conclusion: The presence of a diverse microbial flora in teeth with PELs underscores the polymicrobial nature of these lesions. The predominance of periodontal pathogens such as Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum suggests a strong association between periodontal and endodontic infections. A comprehensive understanding of the microbial profile in PELs is crucial for tailored therapeutic approaches targeting the specific pathogens involved.

14.
J Am Chem Soc ; 135(4): 1491-8, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23339742

ABSTRACT

Oligomers of the 40 and 42 residue amyloid-ß peptides (Aß40 and Aß42) have been implicated in the neuronal damage and impaired cognitive function associated with Alzheimer's disease. However, little is known about the specific mechanisms by which these misfolded species induce such detrimental effects on cells. In this work, we use single-molecule imaging techniques to examine the initial interactions between Aß monomers and oligomers and the membranes of live cells. This highly sensitive method enables the visualization of individual Aß species on the cell surface and characterization of their oligomerization state, all at biologically relevant, nanomolar concentrations. The results indicate that oligomers preferentially interact with cell membranes, relative to monomers and that the oligomers become immobilized on the cell surface. Additionally, we observe that the interaction of Aß species with the cell membrane is inhibited by the presence of ATP-independent molecular chaperones. This study demonstrates the power of this methodology for characterizing the interactions between protein aggregates and the membranes of live neuronal cells at physiologically relevant concentrations and opens the door to quantitative studies of the cellular responses to potentially pathogenic oligomers.


Subject(s)
Amyloid beta-Peptides/chemistry , Cell Membrane/chemistry , Hippocampus/chemistry , Diffusion , Hippocampus/cytology , Humans , Particle Size , Recombinant Proteins/chemistry , Surface Properties
15.
Int J Clin Pediatr Dent ; 16(3): 448-452, 2023.
Article in English | MEDLINE | ID: mdl-37496940

ABSTRACT

Aim: To compare and evaluate the antimicrobial efficacy against Enterococcus faecalis (E. faecalis) between a mix of calcium hydroxide [Ca(OH)2] powder and normal saline, a mix of Ca(OH)2 powder and 2% chlorhexidine (CHX) gluconate solution, a mix of triple antibiotic powder (TAP) and normal saline, and mix of TAP and 2% CHX gluconate solution. Materials and methods: A total of 60 teeth were included in the study. The first sample (S1) was collected after access opening from the widest canal of the tooth by inserting sterile absorbable paper point no 20 up to the full length of the canal for 1 minute. The second sample (S2) was collected after the chemomechanical preparation and irrigation. After that, subjects were randomly divided into four groups-group I-a mix of Ca(OH)2 and normal saline; group II-a mix of Ca(OH)2 and 2% CHX; group III-a mix of TAP and normal saline; and group IV-a mix of TAP and 2% CHX. Assigned intracanal medicaments were placed in the canals, and the teeth were temporarily sealed with a temporary restorative material. On the 7th day, canals were reopened and irrigated, and a third bacteriological sample (S3) was taken out. Later, canals were filled with suitable obturating material, followed by the placement of the permanent restoration. Results: There was a very highly significant (p < 0.005) difference in E. faecalis count in all the groups on day 7 after placement of intracanal medicament, being highest in group IV followed by group II, group III, and group I. Conclusion: Triple antibiotic powder (TAP) mixed with 2% CHX gluconate solution has superior antimicrobial efficacy against E. faecalis in primary teeth. How to cite this article: Qamar S, Jayanna R, Ahuja VR. Comparative Evaluation of Antimicrobial Efficacy of Calcium Hydroxide, Chlorhexidine, and Triple Antibiotic Paste in Different Combination Forms as Intracanal Medicaments against Enterococcus faecalis in Primary Teeth: An In Vivo Randomized Clinical Trial. Int J Clin Pediatr Dent 2023;16(3):448-452.

16.
Acta Neuropathol Commun ; 11(1): 199, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38105257

ABSTRACT

The hypomethylation of fused in sarcoma (FUS) in frontotemporal lobar degeneration promotes the formation of irreversible condensates of FUS. However, the mechanisms by which these hypomethylated FUS condensates cause neuronal dysfunction are unknown. Here we report that expression of FUS constructs mimicking hypomethylated FUS causes aberrant dendritic FUS condensates in CA1 neurons. These hypomethylated FUS condensates exhibit spontaneous, and activity induced movement within the dendrite. They impair excitatory synaptic transmission, postsynaptic density-95 expression, and dendritic spine plasticity. These neurophysiological defects are dependent upon both the dendritic localisation of the condensates, and their ability to undergo liquid-liquid phase separation. These results indicate that the irreversible liquid-liquid phase separation is a key component of hypomethylated FUS pathophysiology in sporadic FTLD, and this can cause synapse dysfunction in sporadic FTLD.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Phase Separation , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/metabolism , Frontotemporal Lobar Degeneration/genetics , DNA Methylation
17.
Nat Commun ; 14(1): 684, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36755024

ABSTRACT

The formation of biomolecular condensates through phase separation from proteins and nucleic acids is emerging as a spatial organisational principle used broadly by living cells. Many such biomolecular condensates are not, however, homogeneous fluids, but possess an internal structure consisting of distinct sub-compartments with different compositions. Notably, condensates can contain compartments that are depleted in the biopolymers that make up the condensate. Here, we show that such double-emulsion condensates emerge via dynamically arrested phase transitions. The combination of a change in composition coupled with a slow response to this change can lead to the nucleation of biopolymer-poor droplets within the polymer-rich condensate phase. Our findings demonstrate that condensates with a complex internal architecture can arise from kinetic, rather than purely thermodynamic driving forces, and provide more generally an avenue to understand and control the internal structure of condensates in vitro and in vivo.


Subject(s)
Nucleic Acids , Proteins , Biopolymers , Thermodynamics
18.
bioRxiv ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36993242

ABSTRACT

Phase transitions of cellular proteins and lipids play a key role in governing the organisation and coordination of intracellular biology. The frequent juxtaposition of proteinaceous biomolecular condensates to cellular membranes raises the intriguing prospect that phase transitions in proteins and lipids could be co-regulated. Here we investigate this possibility in the ribonucleoprotein (RNP) granule-ANXA11-lysosome ensemble, where ANXA11 tethers RNP granule condensates to lysosomal membranes to enable their co-trafficking. We show that changes to the protein phase state within this system, driven by the low complexity ANXA11 N-terminus, induce a coupled phase state change in the lipids of the underlying membrane. We identify the ANXA11 interacting proteins ALG2 and CALC as potent regulators of ANXA11-based phase coupling and demonstrate their influence on the nanomechanical properties of the ANXA11-lysosome ensemble and its capacity to engage RNP granules. The phenomenon of protein-lipid phase coupling we observe within this system offers an important template to understand the numerous other examples across the cell whereby biomolecular condensates closely juxtapose cell membranes.

19.
Biochim Biophys Acta ; 1812(10): 1225-38, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21126580

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutation of PKD1 and PKD2 that encode polycystin-1 and polycystin-2. Polycystin-1 is tyrosine phosphorylated and modulates multiple signaling pathways including AP-1, and the identity of the phosphatases regulating polycystin-1 are previously uncharacterized. Here we identify members of the LAR protein tyrosine phosphatase (RPTP) superfamily as members of the polycystin-1complex mediated through extra- and intracellular interactions. The first extracellular PKD1 domain of polycystin-1 interacts with the first Ig domain of RPTPσ, while the polycystin-1 C-terminus of polycystin-1 interacts with the regulatory D2 phosphatase domain of RPTPγ. Additional homo- and heterotypic interactions between RPTPs recruit RPTPδ. The multimeric polycystin protein complex is found localised in cilia. RPTPσ and RPTPδ are also part of a polycystin-1/E-cadherin complex known to be important for early events in adherens junction stabilisation. The interaction between polycystin-1 and RPTPγ is disrupted in ADPKD cells, while RPTPσ and RPTPδ remain closely associated with E-cadherin, largely in an intracellular location. The polycystin-1 C-terminus is an in vitro substrate of RPTPγ, which dephosphorylates the c-Src phosphorylated Y4237 residue and activates AP1-mediated transcription. The data identify RPTPs as novel interacting partners of the polycystins both in cilia and at adhesion complexes and demonstrate RPTPγ phosphatase activity is central to the molecular mechanisms governing polycystin-dependent signaling. This article is part of a Special Issue entitled: Polycystic Kidney Disease.


Subject(s)
Receptor-Like Protein Tyrosine Phosphatases/chemistry , TRPP Cation Channels/chemistry , Amino Acid Sequence , Animals , Cadherins/chemistry , Cadherins/metabolism , Cell Line , Cell Membrane/chemistry , Humans , In Vitro Techniques , Kidney/metabolism , Mice , Models, Molecular , Multiprotein Complexes/chemistry , Mutagenesis, Site-Directed , Peptide Library , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Protein Interaction Domains and Motifs , Receptor-Like Protein Tyrosine Phosphatases/genetics , Receptor-Like Protein Tyrosine Phosphatases/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 2/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 5/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Transcription Factor AP-1/metabolism
20.
Proteome Sci ; 10(1): 33, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22607704

ABSTRACT

BACKGROUND: Signal peptide peptidase (SPP), a member of the presenilin-like intra-membrane cleaving aspartyl protease family, migrates on Blue Native (BN) gels as 100 kDa, 200 kDa and 450 kDa species. SPP has recently been implicated in other non-proteolytic functions such as retro-translocation of MHC Class I molecules and binding of misfolded proteins in the endoplasmic reticulum (ER). These high molecular weight SPP complexes might contain additional proteins that regulate the proteolytic activity of SPP or support its non-catalytic functions. RESULTS: In this study, an unbiased iTRAQ-labeling mass spectrometry approach was used to identify SPP-interacting proteins. We found that vigilin, a ubiquitous multi-KH domain containing cytoplasmic protein involved in RNA binding and protein translation control, selectively enriched with SPP. Vigilin interacted with SPP and both proteins co-localized in restricted intracellular domains near the ER, biochemically co-fractionated and were part of the same 450 kDa complex on BN gels. However, vigilin does not alter the protease activity of SPP, suggesting that the SPP-vigilin interaction might be involved in the non-proteolytic functions of SPP. CONCLUSIONS: We have identified and validated vigilin as a novel interacting partner of SPP that could play an important role in the non-proteolytic functions of SPP. This data adds further weight to the idea that intramembrane-cleaving aspartyl proteases, such as presenilin and SPPs, could have other functions besides the proteolysis of short membrane stubs.

SELECTION OF CITATIONS
SEARCH DETAIL