Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Plant Cell ; 35(6): 2114-2131, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36861340

ABSTRACT

Brassinosteroid (BR), a growth-promoting phytohormone, regulates many plant growth processes including cell development. However, the mechanism by which BR regulates fiber growth is poorly understood. Cotton (Gossypium hirsutum) fibers are an ideal single-cell model in which to study cell elongation due to their length. Here we report that BR controls cotton fiber elongation by modulating very-long-chain fatty acid (VLCFA) biosynthesis. BR deficiency reduces the expression of 3-ketoacyl-CoA synthases (GhKCSs), the rate-limiting enzymes involved in VLCFA biosynthesis, leading to lower saturated VLCFA contents in pagoda1 (pag1) mutant fibers. In vitro ovule culture experiments show that BR acts upstream of VLCFAs. Silencing of BRI1-EMS-SUPPRESOR 1.4 (GhBES1.4), encoding a master transcription factor of the BR signaling pathway, significantly reduces fiber length, whereas GhBES1.4 overexpression produces longer fibers. GhBES1.4 regulates endogenous VLCFA contents and directly binds to BR RESPONSE ELEMENTS (BRREs) in the GhKCS10_At promoter region, which in turn regulates GhKCS10_At expression to increase endogenous VLCFA contents. GhKCS10_At overexpression promotes cotton fiber elongation, whereas GhKCS10_At silencing inhibits cotton fiber growth, supporting a positive regulatory role for GhKCS10_At in fiber elongation. Overall, these results uncover a mechanism of fiber elongation through crosstalk between BR and VLCFAs at the single-cell level.


Subject(s)
Brassinosteroids , Cotton Fiber , Gossypium/genetics , Cell Differentiation , Fatty Acids
2.
Plant J ; 115(6): 1729-1745, 2023 09.
Article in English | MEDLINE | ID: mdl-37326240

ABSTRACT

The steroidal hormone brassinosteroid (BR) has been shown to positively regulate cell expansion in plants. However, the specific mechanism by which BR controls this process has not been fully understood. In this study, RNA-seq and DAP-seq analysis of GhBES1.4 (a core transcription factor in BR signaling) were used to identify a cotton cell cycle-dependent kinase inhibitor called GhKRP6. The study found that GhKRP6 was significantly induced by the BR hormone and that GhBES1.4 directly promoted the expression of GhKRP6 by binding to the CACGTG motif in its promoter region. GhKRP6-silenced cotton plants had smaller leaves with more cells and reduced cell size. Furthermore, endoreduplication was inhibited, which affected cell expansion and ultimately decreased fiber length and seed size in GhKRP6-silenced plants compared with the control. The KEGG enrichment results of control and VIGS-GhKRP6 plants revealed differential expression of genes related to cell wall biosynthesis, MAPK, and plant hormone transduction pathways - all of which are related to cell expansion. Additionally, some cyclin-dependent kinase (CDK) genes were upregulated in the plants with silenced GhKRP6. Our study also found that GhKRP6 could interact directly with a cell cycle-dependent kinase called GhCDKG. Taken together, these results suggest that BR signaling influences cell expansion by directly modulating the expression of cell cycle-dependent kinase inhibitor GhKRP6 via GhBES1.4.


Subject(s)
Brassinosteroids , Gossypium , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Gossypium/genetics , Gossypium/metabolism , Cell Cycle/genetics , Plants/metabolism , Hormones , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
3.
Plant J ; 115(4): 967-985, 2023 08.
Article in English | MEDLINE | ID: mdl-37158663

ABSTRACT

N6 -Methyladenosine (m6 A) is the most abundant methylation modification in eukaryotic mRNA. The discovery of the dynamic and reversible regulatory mechanism of m6 A has greatly promoted the development of m6 A-led epitranscriptomics. However, the characterization of m6 A in cotton fiber is still unknown. Here, we reveal the potential link between m6 A modification and cotton fiber elongation by parallel m6 A-immunoprecipitation-sequencing (m6 A-seq) and RNA-seq analysis of fibers from the short fiber mutants Ligonliness-2 (Li2 ) and wild-type (WT). This study demonstrated a higher level of m6 A in the Li2 mutant, with the enrichment of m6 A modifications in the stop codon, 3'-untranslated region and coding sequence regions than in WT cotton. In the correlation analysis between genes containing differential m6 A modifications and differentially expressed genes, we identified several genes that could potentially regulate fiber elongation, including cytoskeleton, microtubule binding, cell wall and transcription factors (TFs). We further confirmed that the methylation of m6 A affected the mRNA stability of these fiber elongation-related genes including the TF GhMYB44, which showed the highest expression level in the RNA-seq data and m6 A methylation in the m6 A-seq data. Next, the overexpression of GhMYB44 reduces fiber elongation, whereas the silencing of GhMYB44 produces longer fibers. In summary, these results uncover that m6 A methylation regulated the expression of genes related to fiber development by affecting mRNA's stability, ultimately affecting cotton fiber elongation.


Subject(s)
Cotton Fiber , Gossypium , RNA-Seq , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gossypium/genetics , Gossypium/metabolism , Gene Expression Regulation, Plant/genetics
4.
Plant Physiol ; 191(3): 1985-2000, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36542688

ABSTRACT

Brassinosteroids (BRs) participate in the regulation of plant growth and development through BRI1-EMS-SUPPRESSOR1 (BES1)/BRASSINAZOLE-RESISTANT1 (BZR1) family transcription factors. Cotton (Gossypium hirsutum) fibers are highly elongated single cells, and BRs play a vital role in the regulation of fiber elongation. However, the mode of action on how BR is involved in the regulation of cotton fiber elongation remains unexplored. Here, we generated GhBES1.4 over expression lines and found that overexpression of GhBES1.4 promoted fiber elongation, whereas silencing of GhBES1.4 reduced fiber length. DNA affinity purification and sequencing (DAP-seq) identified 1,531 target genes of GhBES1.4, and five recognition motifs of GhBES1.4 were identified by enrichment analysis. Combined analysis of DAP-seq and RNA-seq data of GhBES1.4-OE/RNAi provided mechanistic insights into GhBES1.4-mediated regulation of cotton fiber development. Further, with the integrated approach of GWAS, RNA-seq, and DAP-seq, we identified seven genes related to fiber elongation that were directly regulated by GhBES1.4. Of them, we showed Cytochrome P450 84A1 (GhCYP84A1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (GhHMG1) promote cotton fiber elongation. Overall, the present study established the role of GhBES1.4-mediated gene regulation and laid the foundation for further understanding the mechanism of BR participation in regulating fiber development.


Subject(s)
Brassinosteroids , Gossypium , Brassinosteroids/metabolism , Gossypium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Base Sequence , Cotton Fiber , Gene Expression Regulation, Plant
5.
Physiol Plant ; 176(3): e14378, 2024.
Article in English | MEDLINE | ID: mdl-38887925

ABSTRACT

D-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH. Transcriptomic and qRT-PCR data exhibited heightened expression of GhD2HGDH in upland cotton flowers. Additionally, early-maturing cotton exhibited higher expression of GhD2HGDH across all tissues than delayed-maturing cotton. Subcellular localization confirmed its presence in the mitochondria. Overexpression of GhD2HGDH in Arabidopsis resulted in early flowering. Using virus-induced gene silencing (VIGS), we investigated the impact of GhD2HGDH on flowering in both early- and delayed-maturing cotton plants. Manipulation of GhD2HGDH expression levels led to changes in photosynthetic pigment and gas exchange attributes. GhD2HGDH responded to gibberellin (GA3) hormone treatment, influencing the expression of GA biosynthesis genes and repressing DELLA genes. Protein interaction studies, including yeast two-hybrid, luciferase complementation (LUC), and GST pull-down assays, confirmed the interaction between GhD2HGDH and GhSOX (Sulfite oxidase). The metabolomics analysis demonstrated GhD2HGDH's modulation of the TCA cycle through alterations in various metabolite levels. Transcriptome data revealed that GhD2HGDH overexpression triggers early flowering by modulating the GA3 and photoperiodic pathways of the flowering core factor genes. Taken together, GhD2HGDH positively regulates the network of genes associated with early flowering pathways.


Subject(s)
Arabidopsis , Flowers , Gene Expression Regulation, Plant , Gibberellins , Gossypium , Photoperiod , Plant Proteins , Gossypium/genetics , Gossypium/physiology , Gossypium/metabolism , Flowers/genetics , Flowers/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Plants, Genetically Modified , Electron Transport
6.
Plant Cell Rep ; 43(3): 76, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38381221

ABSTRACT

KEY MESSAGE: GhHB14_D10 and GhREV_D5 regulated secondary cell wall formation and played an important role in fiber development. Cotton serves as an important source of natural fiber, and the biosynthesis of the secondary cell wall plays a pivotal role in determining cotton fiber quality. Nevertheless, the intricacies of this mechanism in cotton fiber remain insufficiently elucidated. This study investigates the functional roles of GhHB14_D10 and GhREV_D5, two HD-ZIP III transcription factors, in secondary cell wall biosynthesis in cotton fibers. Both GhHB14_D10 and GhREV_D5 were found to be localized in the nucleus with transcriptional activation activity. Ectopic overexpression of GhHB14_D10 and GhREV_D5 in Arabidopsis resulted in changed xylem differentiation, secondary cell wall deposition, and expression of genes related to the secondary cell wall. Silencing of GhHB14_D10 and GhREV_D5 in cotton led to enhanced fiber length, reduced cell wall thickness, cellulose contents and expression of secondary cell wall-related genes. Moreover, GhHB14_D10's direct interaction with GhREV_D5, and transcriptional regulation of cellulose biosynthesis genes GhCesA4-4 and GhCesA7-2 revealed their collaborative roles in secondary cell wall during cotton fiber development. Overall, these results shed light on the roles of GhHB14_D10 and GhREV_D5 in secondary cell wall biosynthesis, offering a strategy for the genetic improvement of cotton fiber quality.


Subject(s)
Arabidopsis , Cotton Fiber , Transcription Factors/genetics , Gossypium/genetics , Arabidopsis/genetics , Cell Wall , Cellulose
7.
Plant Mol Biol ; 111(1-2): 89-106, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36271986

ABSTRACT

KEY MESSAGE: We proposed a working model of BR to promote leaf size through cell expansion. In the BR signaling pathway, GhBES1 affects cotton leaf size by binding to and activating the expression of the E-box element in the GhEXO2 promoter region. Brassinosteroid (BR) is an essential phytohormone that controls plant growth. However, the mechanisms of BR regulation of leaf size remain to be determined. Here, we found that the BR deficient cotton mutant pagoda1 (pag1) had a smaller leaf size than wild-type CRI24. The expression of EXORDIUM (GhEXO2) gene, was significantly downregulated in pag1. Silencing of BRI1-EMS-SUPPRESSOR 1 (GhBES1), inhibited leaf cell expansion and reduced leaf size. Overexpression of GhBES1.4 promoted leaf cell expansion and enlarged leaf size. Expression analysis showed GhEXO2 expression positively correlated with GhBES1 expression. In plants, altered expression of GhEXO2 promoted leaf cell expansion affecting leaf size. Furthermore, GhBES1.4 specifically binds to the E-box elements in the GhEXO2 promoter, inducing its expression. RNA-seq data revealed many down-regulated genes related to cell expansion in GhEXO2 silenced plants. In summary, we discovered a novel mechanism of BR regulation of leaf size through GhBES1 directly activating the expression of GhEXO2.


Subject(s)
Brassinosteroids , Gossypium , Gossypium/metabolism , Brassinosteroids/metabolism , Plant Growth Regulators/metabolism , Promoter Regions, Genetic/genetics , Plant Leaves/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
8.
BMC Genomics ; 23(1): 40, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35012446

ABSTRACT

BACKGROUND: RADIALIS (RAD), belongs to the MYB gene family and regulates a variety of functions including floral dorsoventral asymmetry in Antirrhinum majus and development of fruit proteins in Solanum lycopersicum. RAD genes contain an SNF2_N superfamily domain. Here, we comprehensively identified 68 RAD genes from six different species including Arabidopsis and five species of cotton. RESULTS: Phylogenetic analysis classified RAD genes into five groups. Gene structure, protein motifs and conserved amino acid residues indicated that GhRAD genes were highly conserved during the evolutionary process. Chromosomal location information showed that GhRAD genes were distributed unevenly on different chromosomes. Collinearity and selection pressure analysis indicated RAD gene family expansion in G. hirsutum and G. barbadense with purifying selection pressure. Further, various growth and stress related promotor cis-acting elements were observed. Tissue specific expression level indicated that most GhRAD genes were highly expressed in roots and flowers (GhRAD2, GhRAD3, GhRAD4 and GhRAD11). Next, GhRAD genes were regulated by phytohormonal stresses (JA, BL and IAA). Moreover, Ghi-miRN1496, Ghi-miR1440, Ghi-miR2111b, Ghi-miR2950a, Ghi-miR390a, Ghi-miR390b and Ghi-miR7495 were the miRNAs targeting most of GhRAD genes. CONCLUSIONS: Our study revealed that RAD genes are evolutionary conserved and might be involved in different developmental processes and hormonal stress response. Data presented in our study could be used as the basis for future studies of RAD genes in cotton.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Gossypium/genetics , Multigene Family , Flowers/physiology , Phylogeny , Plant Growth Regulators , Plant Proteins/genetics , Stress, Physiological
9.
BMC Plant Biol ; 21(1): 13, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407131

ABSTRACT

BACKGROUND: The sequencing and annotations of cotton genomes provide powerful theoretical support to unravel more physiological and functional information. Plant homeodomain (PHD) protein family has been reported to be involved in regulating various biological processes in plants. However, their functional studies have not yet been carried out in cotton. RESULTS: In this study, 108, 55, and 52 PHD genes were identified in G. hirsutum, G. raimondii, and G. arboreum, respectively. A total of 297 PHD genes from three cotton species, Arabidopsis, and rice were divided into five groups. We performed chromosomal location, phylogenetic relationship, gene structure, and conserved domain analysis for GhPHD genes. GhPHD genes were unevenly distributed on each chromosome. However, more GhPHD genes were distributed on At_05, Dt_05, and At_07 chromosomes. GhPHD proteins depicted conserved domains, and GhPHD genes exhibiting similar gene structure were clustered together. Further, whole genome duplication (WGD) analysis indicated that purification selection greatly contributed to the functional maintenance of GhPHD gene family. Expression pattern analysis based on RNA-seq data showed that most GhPHD genes showed clear tissue-specific spatiotemporal expression patterns elucidating the multiple functions of GhPHDs in plant growth and development. Moreover, analysis of cis-acting elements revealed that GhPHDs may respond to a variety of abiotic and phytohormonal stresses. In this regard, some GhPHD genes showed good response against abiotic and phytohormonal stresses. Additionally, co-expression network analysis indicated that GhPHDs are essential for plant growth and development, while GhPHD genes response against abiotic and phytohormonal stresses may help to improve plant tolerance in adverse environmental conditions. CONCLUSION: This study will provide useful information to facilitate further research related to the vital roles of GhPHD gene family in plant growth and development.


Subject(s)
Arabidopsis/genetics , Gossypium/growth & development , Gossypium/genetics , Homeodomain Proteins/genetics , Oryza/genetics , Phytochrome/genetics , Plant Growth Regulators/genetics , Stress, Physiological/genetics , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Growth and Development/genetics , Homeodomain Proteins/metabolism , Multigene Family , Phylogeny , Phytochrome/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis , Stress, Physiological/physiology
10.
Planta ; 255(1): 14, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34862931

ABSTRACT

MAIN CONCLUSION: Genome wide analysis, expression pattern analysis, and functional characterization of RAV genes highlight their roles in roots, stem development and hormonal response. RAV (Related to ABI3 and VP1) gene family members have been involved in tissues/organs growth and hormone signaling in various plant species. Here, we identified 247 RAVs from 12 different species with 33 RAV genes from G. hirsutum. Phylogenetic analysis classified RAV genes into four distinct groups. Analysis of gene structure showed that most GhRAVs lack introns. Motif distribution pattern and protein sequence logos indicated that GhRAV genes were highly conserved during the process of evolution. Promotor cis-acting elements revealed that promotor regions of GhRAV genes encode numerous elements related to plant growth, abiotic stresses and phytohormones. Chromosomal location information showed uneven distribution of 33 GhRAV genes on different chromosomes. Collinearity analysis identified 628 and 52 orthologous/ paralogous gene pairs in G. hirsutum and G. barbadense, respectively. Ka/Ks values indicated that GhRAV and GbRAV genes underwent strong purifying selection pressure. Selecton model and codon model selection revealed that GhRAV amino acids were under purifying selection and adaptive evolution exists among GhRAV proteins. Three dimensional structure of GhRAVs indicated the presence of numerous alpha helix and beta-barrels. Expression level revealed that some GhRAV genes exhibited high expression in roots (GhRAV3, GhRAV4, GhRAV11, GhRAV18, GhRAV20 and GhRAV30) and stem (GhRAV3 and GhRAV18), indicating their potential role in roots and stem development. GhRAV genes can be regulated by phytohormonal stresses (BL, JA and IAA). Our study provides a reference for future studies related to the functional analysis of GhRAVs in cotton.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Genome, Plant , Gossypium/genetics , Gossypium/metabolism , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological
11.
Planta ; 254(4): 75, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34533620

ABSTRACT

MAIN CONCLUSION: Brassinosteroid (BR) synthesis genes in different cotton species was comprehensively identified, and the participation of GhCPD-3 in the BR synthesis signaling pathway for regulating plant development was verified. Brassinosteroid is a natural steroidal phytohormone that plays fundamental roles in plant growth and development. In cotton, detailed characterization and functional validation of BR biosynthesis genes remain rare. Here, 16, 8 and 9 BR biosynthesis genes were identified in Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively, and their phylogenetic relationships, gene structures, conserved motifs of the encoded proteins, chromosomal locations were determined and a synteny analysis was performed. Gossypium hirsutum and Arabidopsis BR biosynthesis genes closely clustered in the phylogenetic tree and fragment duplication was likely the primary cause promoting gene family expansion in G. hirsutum. Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed their relevance as BR biosynthesis genes. GhCPD-3 was highly expressed in roots and stems and the loci of single nucleotide polymorphisms (SNPs) were significantly associated with these traits.Ectopic overexpression of GhCPD-3 in the cpd91 Arabidopsis mutant rescued the mutant phenotype by increasing plant height and leaf size in comparison to those of cpd91 and WT plants. Moreover, overexpressed GhCPD-3 in cpd91 mutants showed greater hypocotyl and root lengths than those of cpd91 and WT plants under light and dark conditions, respectively, indicating that BR actively promotes hypocotyl and root growth. Similar to CPD (CONSTITUTIVE PHOTOMORPHOGENIC DWARF), GhCPD-3 restores BR biosynthesis thereby mediating plant growth and development.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Gossypium/genetics , Gossypium/metabolism , Phylogeny , Plant Development , Plant Proteins/genetics , Plant Proteins/metabolism
12.
BMC Genomics ; 21(1): 561, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32799801

ABSTRACT

BACKGROUND: GGPP (geranylgeranyl diphosphate) is produced in the isoprenoid pathway and mediates the function of various plant metabolites, which is synthesized by GGPPS (GGPP synthases) in plants. GGPPS characterization has not been performed in any plant species except Arabidopsis thaliana. Here, we performed a complete computational and bioinformatics analysis of GGPPS and detected their transcription expression pattern in Gossypium hirsutum for the first time so that to explore their evolutionary relationship and potential functions. Finally, we unravelled evolutionary relationship, conserved sequence logos, gene duplication and potential involvement in plant development and abiotic stresses tolerance of GGPPS genes in G. hirsutum and other plant species. RESULTS: A total of 159 GGPPS genes from 18 plant species were identified and evolutionary analysis divided these GGPPS genes into five groups to indicate their divergence from a common ancestor. Further, GGPPS family genes were conserved during evolution and underwent segmental duplication. The identified 25 GhGGPPS genes showed diverse expression pattern particularly in ovule and fiber development indicating their vital and divers roles in the fiber development. Additionally, GhGGPPS genes exhibited wide range of responses when subjected to abiotic (heat, cold, NaCl and PEG) stresses and hormonal (BL, GA, IAA, SA and MeJA) treatments, indicating their potential roles in various biotic and abiotic stresses tolerance. CONCLUSIONS: The GGPPS genes are evolutionary conserved and might be involve in different developmental stages and stress response. Some potential key genes (e.g. GhGGPP4, GhGGPP9, and GhGGPP15) were suggested for further study and provided valuable source for cotton breeding to improve fiber quality and resistant to various stresses.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Farnesyltranstransferase , Genome, Plant , Gossypium/genetics , Multigene Family , Phylogeny , Plant Breeding , Plant Development , Plant Proteins/genetics , Stress, Physiological/genetics
13.
J Exp Bot ; 70(18): 4721-4736, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31106831

ABSTRACT

Plants undergo a phase transition from vegetative to reproductive development that triggers floral induction. Genes containing an AAI (α-amylase inhibitor) domain form a large gene family, but there have been no comprehensive analyses of this gene family in any plant species. Here, we identified 336 AAI genes from nine plant species including122 AAI genes in cotton (Gossypium hirsutum). The AAI gene family has evolutionarily conserved amino acid residues throughout the plant kingdom. Phylogenetic analysis classified AAI genes into five major clades with significant polyploidization and showing effects of genome duplication. Our study identified 42 paralogous and 216 orthologous gene pairs resulting from segmental and whole-genome duplication, respectively, demonstrating significant contributions of gene duplication to expansion of the cotton AAI gene family. Further, GhAAI66 was preferentially expressed in flower tissue and as responses to phytohormone treatments. Ectopic expression of GhAAI66 in Arabidopsis and silencing in cotton revealed that GhAAI66 triggers a phase transition to induce early flowering. Further, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis of RNA sequencing data and qRT-PCR (quantitative reverse transcription-PCR) analysis indicated that GhAAI66 integrates multiple flower signaling pathways including gibberellin, jasmonic acid, and floral integrators to trigger an early flowering cascade in Arabidopsis. Therefore, characterization of the AAI family provides invaluable insights for improving cotton breeding.


Subject(s)
Flowers/growth & development , Gene Expression Regulation, Plant , Gossypium/genetics , Plant Proteins/genetics , Bryophyta/genetics , Bryophyta/metabolism , Ferns/genetics , Ferns/metabolism , Flowers/genetics , Gossypium/metabolism , Magnoliopsida/genetics , Magnoliopsida/metabolism , Plant Proteins/metabolism
14.
Int J Mol Sci ; 20(7)2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30970629

ABSTRACT

Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor kinases in plants. Receptor kinases comprise large gene families in many plant species, including the 15 PERK genes in Arabidopsis. At present, there is no comprehensive published study of PERK genes in G. hirsutum. Our study identified 33 PERK genes in G. hirsutum. Phylogenetic analysis of conserved PERK protein sequences from 15 plant species grouped them into four well defined clades. The GhPERK gene family is an evolutionarily advanced gene family that lost its introns over time. Several cis-elements were identified in the promoter regions of the GhPERK genes that are important in regulating growth, development, light responses and the response to several stresses. In addition, we found evidence for gene loss or addition through segmental or whole genome duplication in cotton. Gene duplication and synteny analysis identified 149 orthologous/paralogous gene pairs. Ka/Ks values show that most GhPERK genes experienced strong purifying selection during the rapid evolution of the gene family. GhPERK genes showed high expression levels in leaves and during ovule development. Furthermore, the expression of GhPERK genes can be regulated by abiotic stresses and phytohormone treatments. Additionally, PERK genes could be involved in several molecular, biological and physiological processes that might be the result of functional divergence.


Subject(s)
Gene Duplication , Gossypium/genetics , Plant Leaves/genetics , eIF-2 Kinase/genetics , Amino Acid Sequence , Computer Simulation , Evolution, Molecular , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Phylogeny , Plant Proteins/genetics
15.
BMC Plant Biol ; 18(1): 330, 2018 Dec 04.
Article in English | MEDLINE | ID: mdl-30514299

ABSTRACT

BACKGROUND: The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30 years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. RESULT: In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub-networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. CONCLUSION: In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.


Subject(s)
Cotton Fiber , Glycogen Synthase Kinase 3/genetics , Gossypium/genetics , Plant Proteins/genetics , Animals , Gene Duplication/genetics , Gene Expression Regulation, Plant , Genes, Plant/genetics , Genes, Plant/physiology , Genome-Wide Association Study , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/physiology , Gossypium/metabolism , Gossypium/physiology , Phylogeny , Plant Proteins/metabolism , Plant Proteins/physiology , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction , Stress, Physiological/genetics , Stress, Physiological/physiology
16.
BMC Plant Biol ; 18(1): 350, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30541440

ABSTRACT

BACKGROUND: Auxin-induced genes regulate many aspects of plant growth and development. The Gretchen Hagen 3 (GH3) gene family, one of three major early auxin-responsive families, is ubiquitous in the plant kingdom and its members function as regulators in modulating hormonal homeostasis, and stress adaptations. Specific Auxin-amido synthetase activity of GH3 subfamily II genes is reported to reversibly inactivate or fully degrade excess auxin through the formation of amino acid conjugates. Despite these crucial roles, to date, genome-wide analysis of the GH3 gene family has not been reported in cotton. RESULTS: We identified a total of 10 GH3 subfamily II genes in G. arboreum, 10 in G. raimondii, and 20 in G. hirsutum, respectively. Bioinformatic analysis showed that cotton GH3 genes are conserved with the established GH3s in plants. Expression pattern analysis based on RNA-seq data and qRT-PCR revealed that 20 GhGH3 genes were differentially expressed in a temporally and spatially specific manner, indicating their diverse functions in growth and development. We further summarized the organization of promoter regulatory elements and monitored their responsiveness to treatment with IAA (indole-3-acetic acid), SA (salicylic acid), GA (gibberellic acid) and BL (brassinolide) by qRT-PCR in roots and stems. These hormones seemed to regulate the expression of GH3 genes in both a positive and a negative manner while certain members likely have higher sensitivity to all four hormones. Further, we tested the expression of GhGH3 genes in the BR-deficient mutant pag1 and the corresponding wild-type (WT) of CCRI24. The altered expression reflected the true responsiveness to BL and further suggested possible reasons, at least in part, responsible for the dramatic dwarf and shriveled phenotypes of pag1. CONCLUSION: We comprehensively identified GH3 subfamily II genes in cotton. GhGH3s are differentially expressed in various tissues/organs/stages. Their response to IAA, SA, BL and GA and altered expression in pag1 suggest that some GhGH3 genes might be simultaneously involved in multiple hormone signaling pathways. Taken together, our results suggest that members of the GhGH3 gene family could be possible candidate genes for mechanistic study and applications in cotton fiber development in addition to the reconstruction of plant architecture.


Subject(s)
Cotton Fiber , Genes, Plant/genetics , Gossypium/genetics , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant/genetics , Genes, Plant/physiology , Genome-Wide Association Study , Gossypium/anatomy & histology , Gossypium/growth & development , Gossypium/metabolism , Phylogeny , Plant Proteins/metabolism , Plant Proteins/physiology
19.
J Adv Res ; 58: 13-30, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37207930

ABSTRACT

INTRODUCTION: The unavailability of intergenic region annotation in whole genome sequencing and pan-genomics hinders efforts to enhance crop improvement. OBJECTIVES: Despite advances in research, the impact of post-transcriptional regulation on fiber development and translatome profiling at different stages of fiber growth in cotton (G. hirsutum) remains unexplored. METHODS: We utilized a combination of reference-guided de novo transcriptome assembly and ribosome profiling techniques to uncover the hidden mechanisms of translational control in eight distinct tissues of upland cotton. RESULTS: Our study identified P-site distribution at three-nucleotide periodicity and dominant ribosome footprint at 27 nucleotides. Specifically, we have detected 1,589 small open reading frames (sORFs), including 1,376 upstream ORFs (uORFs) and 213 downstream ORFs (dORFs), as well as 552 long non-coding RNAs (lncRNAs) with potential coding functions, which fine-tune the annotation of the cotton genome. Further, we have identified novel genes and lncRNAs with strong translation efficiency (TE), while sORFs were found to affect mRNA transcription levels during fiber elongation. The reliability of these findings was confirmed by the high consistency in correlation and synergetic fold change between RNA-sequencing (RNA-seq) and Ribosome-sequencing (Ribo-seq) analyses. Additionally, integrated omics analysis of the normal fiber ZM24 and short fiber pag1 cotton mutant revealed several differentially expressed genes (DEGs), and fiber-specific expressed (high/low) genes associated with sORFs (uORFs and dORFs). These findings were further supported by the overexpression and knockdown of GhKCS6, a gene associated with sORFs in cotton, and demonstrated the potential regulation of the mechanism governing fiber elongation on both the transcriptional and post-transcriptional levels. CONCLUSION: Reference-guided transcriptome assembly and the identification of novel transcripts fine-tune the annotation of the cotton genome and predicted the landscape of fiber development. Our approach provided a high-throughput method, based on multi-omics, for discovering unannotated ORFs, hidden translational control, and complex regulatory mechanisms in crop plants.


Subject(s)
RNA, Long Noncoding , RNA, Long Noncoding/genetics , Reproducibility of Results , Transcriptome , Ribosomes/genetics , Transcription, Genetic , Gossypium/genetics
20.
Front Plant Sci ; 14: 1123745, 2023.
Article in English | MEDLINE | ID: mdl-36818879

ABSTRACT

SAC genes have been identified to play a variety of biological functions and responses to various stresses. Previously, SAC genes have been recognized in animals and Arabidopsis. For the very first time, we identified 157 SAC genes in eight cotton species including three diploids and five tetraploids with 23 SAC members in G. hirsutum. Evolutionary analysis classified all cotton SAC gene family members into five distinct groups. Cotton SAC genes showed conserved sequence logos and WGD or segmental duplication. Multiple synteny and collinearity analyses revealed gene family expansion and purifying selection pressure during evolution. G. hirsutum SAC genes showed uneven chromosomal distribution, multiple exons/introns, conserved protein motifs, and various growth and stress-related cis-elements. Expression pattern analysis revealed three GhSAC genes (GhSAC3, GhSAC14, and GhSAC20) preferentially expressed in flower, five genes (GhSAC1, GhSAC6, GhSAC9, GhSAC13, and GhSAC18) preferentially expressed in ovule and one gene (GhSAC5) preferentially expressed in fiber. Similarly, abiotic stress treatment verified that GhSAC5 was downregulated under all stresses, GhSAC6 and GhSAC9 were upregulated under NaCl treatment, and GhSAC9 and GhSAC18 were upregulated under PEG and heat treatment respectively. Overall, this study identified key genes related to flower, ovule, and fiber development and important genetic material for breeding cotton under abiotic stress conditions.

SELECTION OF CITATIONS
SEARCH DETAIL