Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Mol Cell ; 70(4): 663-678.e6, 2018 05 17.
Article in English | MEDLINE | ID: mdl-29775581

ABSTRACT

Lysine 2-hydroxyisobutyrylation (Khib) is an evolutionarily conserved and widespread histone mark like lysine acetylation (Kac). Here we report that p300 functions as a lysine 2-hyroxyisobutyryltransferase to regulate glycolysis in response to nutritional cues. We discovered that p300 differentially regulates Khib and Kac on distinct lysine sites, with only 6 of the 149 p300-targeted Khib sites overlapping with the 693 p300-targeted Kac sites. We demonstrate that diverse cellular proteins, particularly glycolytic enzymes, are targeted by p300 for Khib, but not for Kac. Specifically, deletion of p300 significantly reduces Khib levels on several p300-dependent, Khib-specific sites on key glycolytic enzymes including ENO1, decreasing their catalytic activities. Consequently, p300-deficient cells have impaired glycolysis and are hypersensitive to glucose-depletion-induced cell death. Our study reveals an p300-catalyzed, Khib-specific molecular mechanism that regulates cellular glucose metabolism and further indicate that p300 has an intrinsic ability to select short-chain acyl-CoA-dependent protein substrates.


Subject(s)
E1A-Associated p300 Protein/metabolism , Glucose/metabolism , Glycolysis , Histones/metabolism , Hydroxybutyrates/metabolism , Lysine/metabolism , Proteome/metabolism , Acetylation , E1A-Associated p300 Protein/genetics , Histones/genetics , Humans , Lysine/genetics
2.
Mol Cell ; 62(2): 169-180, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27105113

ABSTRACT

Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features.


Subject(s)
Butyrates/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Histones/metabolism , Nuclear Proteins/genetics , Promoter Regions, Genetic , Protein Processing, Post-Translational , Spermatocytes/metabolism , Acetylation , Animals , Binding Sites , Cell Differentiation , Chromatin Assembly and Disassembly , Genome-Wide Association Study , Histones/chemistry , Histones/genetics , Lysine , Male , Mice , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Conformation , Structure-Activity Relationship , Transcription, Genetic , Transcriptional Activation
3.
Mol Cell ; 62(2): 194-206, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27105115

ABSTRACT

Here we report the identification and verification of a ß-hydroxybutyrate-derived protein modification, lysine ß-hydroxybutyrylation (Kbhb), as a new type of histone mark. Histone Kbhb marks are dramatically induced in response to elevated ß-hydroxybutyrate levels in cultured cells and in livers from mice subjected to prolonged fasting or streptozotocin-induced diabetic ketoacidosis. In total, we identified 44 histone Kbhb sites, a figure comparable to the known number of histone acetylation sites. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbhb is a mark enriched in active gene promoters and that the increased H3K9bhb levels that occur during starvation are associated with genes upregulated in starvation-responsive metabolic pathways. Histone ß-hydroxybutyrylation thus represents a new epigenetic regulatory mark that couples metabolism to gene expression, offering a new avenue to study chromatin regulation and diverse functions of ß-hydroxybutyrate in the context of important human pathophysiological states, including diabetes, epilepsy, and neoplasia.


Subject(s)
Diabetic Ketoacidosis/metabolism , Energy Metabolism , Gene Expression Regulation , Histones/metabolism , Hydroxybutyrates/metabolism , Liver/metabolism , Protein Processing, Post-Translational , Starvation/metabolism , Animals , Binding Sites , Chromatin Assembly and Disassembly , Diabetic Ketoacidosis/chemically induced , Diabetic Ketoacidosis/genetics , Disease Models, Animal , Epigenesis, Genetic , Fatty Acids/metabolism , Glucose/metabolism , HEK293 Cells , Histones/genetics , Humans , Lysine , Mice, Inbred C57BL , Promoter Regions, Genetic , Starvation/genetics , Streptozocin
5.
J Biol Chem ; 290(22): 14181-91, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25900245

ABSTRACT

The underlying mechanism for the establishment and maintenance of differential DNA methylation in imprinted genes is largely unknown. Previous studies using Dnmt1 knock-out embryonic stem (ES) cells demonstrated that, although re-expression of DNMT1 restored DNA methylation in the non-imprinted regions, the methylation patterns of imprinted genes could be restored only through germ line passage. Knock-out of Uhrf1, an accessory factor essential for DNMT1-mediated DNA methylation, in mouse ES cells also led to impaired global DNA methylation and loss of genomic imprinting. Here, we demonstrate that, although re-expression of UHRF1 in Uhrf1(-/-) ES cells restored DNA methylation for the bulk genome but not for most of the imprinted genes, it did rescue DNA methylation for the imprinted H19, Nnat, and Dlk1 genes. Analysis of histone modifications at the differential methylated regions of the imprinted genes by ChIP assays revealed that for the imprinted genes whose DNA methylation could be restored upon re-expression of UHRF1, the active histone markers (especially H3K4me3) were maintained at considerably low levels, and low levels were maintained even in Uhrf1(-/-) ES cells. In contrast, for the imprinted genes whose DNA methylation could not be restored upon UHRF1 re-expression, the active histone markers (especially H3K4me3) were relatively high and became even higher in Uhrf1(-/-) ES cells. Our study thus supports a role for histone modifications in determining the establishment of imprinting-related DNA methylation and demonstrates that mouse ES cells can be a valuable model for mechanistic study of the establishment and maintenance of differential DNA methylation in imprinted genes.


Subject(s)
DNA Methylation , Genomic Imprinting , Nuclear Proteins/genetics , Alleles , Animals , CCAAT-Enhancer-Binding Proteins , Calcium-Binding Proteins , Chromatin Immunoprecipitation , Chromatography, High Pressure Liquid , CpG Islands , Embryonic Stem Cells/cytology , Histones/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Long Noncoding/metabolism , Sulfites/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases
6.
iScience ; 27(10): 110911, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39351192

ABSTRACT

Lysine lactylation (Kla), an epigenetic mark triggered by lactate during glycolysis, including the Warburg effect, bridges metabolism and gene regulation. Enzymes such as p300 and HDAC1/3 have been pivotal in deciphering the regulatory dynamics of Kla, though questions about additional regulatory enzymes, their specific Kla substrates, and the underlying functional mechanisms persist. Here, we identify SIRT1 and SIRT3 as key "erasers" of Kla, shedding light on their selective regulation of both histone and non-histone proteins. Proteomic analysis in SIRT1/SIRT3 knockout HepG2 cells reveals distinct substrate specificities toward Kla, highlighting their unique roles in cellular signaling. Notably, we highlight the role of specific Kla modifications, such as those on the M2 splice isoform of pyruvate kinase (PKM2), in modulating metabolic pathways and cell proliferation, thereby expanding Kla's recognized functions beyond epigenetics. Therefore, this study deepens our understanding of Kla's functional mechanisms and broadens its biological significance.

7.
J Biol Chem ; 287(13): 10089-10098, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22294699

ABSTRACT

Histone methylation on lysine residues is believed to function primarily as docking sites to recruit specific proteins termed as histone code "readers" or "effectors." Each lysine residue can be mono-, di, and tri-methylated and different methylation states can have different effect on chromatin function. While an increasing number of proteins have been identified and characterized as specific effectors for methylated histones, very few of the proteins are known to recognize a particular state of methylation. In this study, we identified nardilysin (NRDc), a member of M16 family metalloendopeptidases, as a novel dimethyl-H3K4 (H3K4me2)-binding protein. Among three methylated states, NRDc binds preferentially H3K4me2 both in vitro and in vivo. Biochemical purification demonstrated that NRDc interacts with the NCoR/SMRT corepressor complex. We identified target genes repressed by NRDc through microarray. We showed that NRDc is physically associated with and recruits the NCoR complex to some of the repressed genes and this association correlates with binding of H3K4me2. Thus, our study has identified a novel H3K4me2-binding protein and revealed a role of NRDc in transcriptional regulation.


Subject(s)
Histones/metabolism , Metalloendopeptidases/metabolism , Multiprotein Complexes/metabolism , Nuclear Receptor Co-Repressor 2/metabolism , Transcription, Genetic/physiology , Animals , HeLa Cells , Histones/genetics , Humans , Metalloendopeptidases/genetics , Methylation , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Nuclear Receptor Co-Repressor 2/genetics , Protein Binding
8.
Oxid Med Cell Longev ; 2022: 4571319, 2022.
Article in English | MEDLINE | ID: mdl-35178156

ABSTRACT

Lysine 2-hydroxyisobutyrylation (Khib) is a new type of posttranslational modifications (PTMs) extensively reported on eukaryotic cell histones. It is evolutionarily conserved and participates in diverse important biological processes, such as transcription and cell metabolism. Recently, it has been demonstrated that Khib can be regulated by p300 and Tip60. Although the specific Khib substrates mediated by p300 have been revealed, how Tip60 regulates diverse cellular processes through the Khib pathway and the different roles between Tip60 and p300 in regulating Khib remain largely unknown, which prevents us from understanding how this modification executes its biological functions. In this study, we report the first Khib proteome mediated by Tip60. In total, 3502 unique Khib sites from 1050 proteins were identified. Among them, 536 Khib sites from 406 proteins were present only in Tip60 overexpressing cells and 13 Khib sites increased more than 2-fold in response to Tip60 overexpression, indicating that Tip60 significantly affected global Khib. Notably, only 5 of the 549 Tip60-targeted Khib sites overlapped with the 149 known Khib sites targeted by p300, indicating the different Khib substrate preferences of Tip60 and p300. In addition, the Khib substrates regulated by Tip60 are deeply involved in processes such as nucleic acid metabolism and translation, and some are associated with Parkinson's and Prion diseases. In summary, our research reveals the Khib substrates targeted by Tip60, which elucidates the effect of Tip60 in regulating various cellular processes through the Khib pathway, and proposes novel views into the functional mechanism of Tip60.


Subject(s)
Hydroxybutyrates/therapeutic use , Lysine Acetyltransferase 5/metabolism , Protein Processing, Post-Translational/drug effects , Proteomics/methods , Humans , Transfection
9.
iScience ; 25(11): 105443, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36388951

ABSTRACT

Lysine benzoylation (Kbz) is a newly discovered protein post-translational modification (PTM). This PTM can be stimulated by benzoate and contributes to gene expression. However, its regulatory enzymes and substrate proteins remain largely unknown, hindering further functional studies. Here we identified and validated the lysine acetyltransferase (KAT) HBO1 as a "writer" of Kbz in mammalian cells. In addition, we report the benzoylome in mammalian cells, identifying 1747 Kbz sites; among them at least 77 are the HBO1-targeted Kbz substrates. Bioinformatics analysis showed that HBO1-targeted Kbz sites were involved in multiple processes, including chromatin remodeling, transcription regulation, immune regulation, and tumor growth. Our results thus identify the regulatory elements of the Kbz pathway and reveal the non-canonical enzymatic activity and functions of HBO1 in cellular physiology.

10.
Cell Metab ; 34(5): 667-680.e6, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35427476

ABSTRACT

Developing non-statin-based small compounds to battle the global epidemic of hyperlipidemia remains challenging. Here, we report the discovery of DC371739, an indole-containing tetrahydroisoquinoline compound with promising lipid-lowering effects, both in vitro and in vivo, and with good tolerability in a Phase I clinical trial (NCT04927221). DC371739 significantly reduced the plasma levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides simultaneously in several animal models and showed preliminary positive results in the Phase I trial. Mechanistically, DC371739 acts in a distinct manner from other known lipid-lowering reagents. We show that it physically binds HNF-1α, impeding the transcription of both PCSK9 and ANGPTL3, two genes that are known to contribute to hypercholesterolemia and dyslipidemia. Moreover, the distinct mechanism of action of DC371739 allows its combination with atorvastatin treatment to additively improve dyslipidemia, while providing a potential alternative therapeutic strategy for individuals with statin intolerance.


Subject(s)
Anticholesteremic Agents , Dyslipidemias , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Animals , Anticholesteremic Agents/therapeutic use , Cholesterol, LDL , Dyslipidemias/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Proprotein Convertase 9/genetics , Proprotein Convertase 9/therapeutic use
11.
Sci Rep ; 12(1): 5070, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332177

ABSTRACT

Early diagnosis of lung cancer is critically important to reduce disease severity and improve overall survival. Newer, minimally invasive biopsy procedures often fail to provide adequate specimens for accurate tumor subtyping or staging which is necessary to inform appropriate use of molecular targeted therapies and immune checkpoint inhibitors. Thus newer approaches to diagnosis and staging in early lung cancer are needed. This exploratory pilot study obtained peripheral blood samples from 139 individuals with clinically evident pulmonary nodules (benign and malignant), as well as ten healthy persons. They were divided into three cohorts: original cohort (n = 99), control cohort (n = 10), and validation cohort (n = 40). Average RNAseq sequencing of leukocytes in these samples were conducted. Subsequently, data was integrated into artificial intelligence (AI)-based computational approach with system-wide gene expression technology to develop a rapid, effective, non-invasive immune index for early diagnosis of lung cancer. An immune-related index system, IM-Index, was defined and validated for the diagnostic application. IM-Index was applied to assess the malignancies of pulmonary nodules of 109 participants (original + control cohorts) with high accuracy (AUC: 0.822 [95% CI: 0.75-0.91, p < 0.001]), and to differentiate between phases of cancer immunoediting concept (odds ratio: 1.17 [95% CI: 1.1-1.25, p < 0.001]). The predictive ability of IM-Index was validated in a validation cohort with a AUC: 0.883 (95% CI: 0.73-1.00, p < 0.001). The difference between molecular mechanisms of adenocarcinoma and squamous carcinoma histology was also determined via the IM-Index (OR: 1.2 [95% CI 1.14-1.35, p = 0.019]). In addition, a structural metabolic behavior pattern and signaling property in host immunity were found (bonferroni correction, p = 1.32e - 16). Taken together our findings indicate that this AI-based approach may be used for "Super Early" cancer diagnosis and amend the current immunotherpay for lung cancer.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Artificial Intelligence , Diagnosis, Differential , Early Detection of Cancer , Humans , Leukocytes/pathology , Lung Neoplasms/pathology , Multiple Pulmonary Nodules/diagnosis , Pilot Projects
12.
Sci Adv ; 7(9)2021 02.
Article in English | MEDLINE | ID: mdl-33627428

ABSTRACT

Metabolism-mediated epigenetic changes represent an adapted mechanism for cellular signaling, in which lysine acetylation and methylation have been the historical focus of interest. We recently discovered a ß-hydroxybutyrate-mediated epigenetic pathway that couples metabolism to gene expression. However, its regulatory enzymes and substrate proteins remain unknown, hindering its functional study. Here, we report that the acyltransferase p300 can catalyze the enzymatic addition of ß-hydroxybutyrate to lysine (Kbhb), while histone deacetylase 1 (HDAC1) and HDAC2 enzymatically remove Kbhb. We demonstrate that p300-dependent histone Kbhb can directly mediate in vitro transcription. Moreover, a comprehensive analysis of Kbhb substrates in mammalian cells has identified 3248 Kbhb sites on 1397 substrate proteins. The dependence of histone Kbhb on p300 argues that enzyme-catalyzed acylation is the major mechanism for nuclear Kbhb. Our study thus reveals key regulatory elements for the Kbhb pathway, laying a foundation for studying its roles in diverse cellular processes.


Subject(s)
Histones , Lysine , 3-Hydroxybutyric Acid/metabolism , Acetylation , Animals , Histones/metabolism , Lysine/metabolism , Mammals/metabolism , Protein Processing, Post-Translational
13.
Cell Res ; 28(1): 111-125, 2018 01.
Article in English | MEDLINE | ID: mdl-29192674

ABSTRACT

Short-chain fatty acids and their corresponding acyl-CoAs sit at the crossroads of metabolic pathways and play important roles in diverse cellular processes. They are also precursors for protein post-translational lysine acylation modifications. A noteworthy example is the newly identified lysine 2-hydroxyisobutyrylation (Khib) that is derived from 2-hydroxyisobutyrate and 2-hydroxyisobutyryl-CoA. Histone Khib has been shown to be associated with active gene expression in spermatogenic cells. However, the key elements that regulate this post-translational lysine acylation pathway remain unknown. This has hindered characterization of the mechanisms by which this modification exerts its biological functions. Here we show that Esa1p in budding yeast and its homologue Tip60 in human could add Khib to substrate proteins both in vitro and in vivo. In addition, we have identified HDAC2 and HDAC3 as the major enzymes to remove Khib. Moreover, we report the first global profiling of Khib proteome in mammalian cells, identifying 6 548 Khib sites on 1 725 substrate proteins. Our study has thus discovered both the "writers" and "erasers" for histone Khib marks, and major Khib protein substrates. These results not only illustrate the landscape of this new lysine acylation pathway, but also open new avenues for studying diverse functions of cellular metabolites associated with this pathway.


Subject(s)
Histone Deacetylase 2/metabolism , Histone Deacetylases/metabolism , Lysine Acetyltransferase 5/metabolism , Lysine/analogs & derivatives , Lysine/metabolism , Acetyltransferases/metabolism , Acylation , HEK293 Cells , HeLa Cells , Humans , Hydroxybutyrates/metabolism , Protein Processing, Post-Translational , Saccharomyces cerevisiae Proteins/metabolism
14.
Cell Res ; 23(2): 225-41, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23266887

ABSTRACT

LSD2/AOF1/KDM1b catalyzes demethylation of mono- and di-methylated H3K4 and plays an important role in transcriptional regulation and genomic imprinting. Here, we report the high-resolution crystal structures of apo-LSD2 and LSD2 in complex with a peptide that mimics H3K4me2. Three structural domains of LSD2, namely, the novel N-terminal zinc finger, the centrally located SWIRM domain, and the C-terminal oxidase domain, closely pack together to form a boot-shaped structure. The active site cavity in the oxidase domain is large enough to accommodate several residues of the histone H3 tail and cannot discriminate between the different states of H3K4 methylation. The N-terminal zinc-finger domain, composed of a novel C4H2C2-type zinc finger and a specific CW-type zinc finger, is required for demethylase activity and, surprisingly, the binding of cofactor flavin adenine dinucleotide (FAD). In fact, a relay of extensive interactions through the zinc finger-SWIRM-oxidase domains is required for LSD2 demethylase activity and the binding of FAD. These results reveal a novel mechanism for the zinc finger and SWIRM domains in controlling LSD2 demethylase activity and provide a framework for elucidating the regulation and function of LSD2.


Subject(s)
Histone Demethylases/metabolism , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Flavin-Adenine Dinucleotide/metabolism , Histone Demethylases/chemistry , Histone Demethylases/genetics , Histones/metabolism , Humans , Methylation , Molecular Sequence Data , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Alignment , Substrate Specificity , Zinc Fingers
15.
Cell Res ; 20(3): 276-87, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20101264

ABSTRACT

LSD1 (KDM1 under the new nomenclature) was the first identified lysine-specific histone demethylase belonging to the flavin-dependent amine oxidase family. Here, we report that AOF1 (KDM1B under the new nomenclature), a mammalian protein related to LSD1, also possesses histone demethylase activity with specificity for H3K4me1 and H3K4me2. Like LSD1, the highly conserved SWIRM domain is required for its enzymatic activity. However, AOF1 differs from LSD1 in several aspects. First, AOF1 does not appear to form stable protein complexes containing histone deacetylases. Second, AOF1 is found to localize to chromosomes during the mitotic phase of the cell cycle, whereas LSD1 does not. Third, AOF1 represses transcription when tethered to DNA and this repression activity is independent of its demethylase activity. Structural and functional analyses identified its unique N-terminal Zf-CW domain as essential for the demethylase activity-independent repression function. Collectively, our study identifies AOF1 as the second histone demethylase in the family of flavin-dependent amine oxidases and reveals a demethylase-independent repression function of AOF1.


Subject(s)
Oxidoreductases, N-Demethylating/metabolism , Repressor Proteins/metabolism , Animals , Chromosomes/metabolism , Histone Deacetylases/metabolism , Histones/metabolism , Mice , Mitosis , Oocytes/metabolism , Oxidoreductases, N-Demethylating/genetics , Protein Structure, Tertiary , Repressor Proteins/genetics , Transcription, Genetic , Xenopus , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL