Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Mol Gastroenterol Hepatol ; 13(6): 1757-1783, 2022.
Article in English | MEDLINE | ID: mdl-35202885

ABSTRACT

BACKGROUND & AIMS: The liver has complex interconnecting blood vessel and biliary networks; however, how the vascular and biliary network form and regulate each other and liver function are not well-understood. We aimed to examine the role of Heg in mammalian liver development and functional maintenance. METHODS: Global (Heg-/-) or liver endothelial cell (EC)-specific deletion of Heg (Lyve1-Cre;Hegfl/fl ) mice were used to study the in vivo function of Heg in the liver. Carbon-ink anterograde and retrograde injection were used to visualize the 3-dimensional patterning of liver portal and biliary networks, respectively. RNA sequencing, histology, and molecular and biochemical assays were used to assess liver gene expression, protein distribution, liver injury response, and function. RESULTS: Heg deficiency in liver ECs led to a sparse liver vascular and biliary network. This network paucity does not compromise liver function under baseline conditions but did alter liver zonation. Molecular analysis revealed that endothelial Heg deficiency decreased expression of Wnt ligands/agonists including Wnt2, Wnt9b, and Rspo3 in ECs, which limits Axin2 mediated canonical Wnt signaling and the expression of cytochrome P450 enzymes in hepatocytes. Under chemical-induced stressed conditions, Heg-deficiency in liver ECs protected mice from drug-induced liver injuries. CONCLUSION: Our study found that endothelial Heg is essential for the 3-D patterning of the liver vascular and indirectly regulates biliary networks and proper liver zonation via its regulation of Wnt ligand production in liver endothelial cells. The endothelial Heg-initiated changes of the liver metabolic zonation and metabolic enzyme expression in hepatocytes was functionally relevant to xenobiotic metabolism and drug induced liver toxicity.


Subject(s)
Wnt Proteins , Wnt Signaling Pathway , Animals , Endothelial Cells , Liver/pathology , Mammals/metabolism , Mice , Wnt Proteins/genetics , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
2.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: mdl-34156031

ABSTRACT

PDCD10, also known as CCM3, is a gene found to be associated with the human disease cerebral cavernous malformations (CCMs). PDCD10 forms a complex with GCKIII kinases including STK24, STK25, and MST4. Studies in C. elegans and Drosophila have shown a pivotal role of the PDCD10-GCKIII complex in maintaining epithelial integrity. Here, we found that mice deficient of Pdcd10 or Stk24/25 in the kidney tubules developed polyuria and displayed increased water consumption. Although the expression levels of aquaporin genes were not decreased, the levels of total and phosphorylated aquaporin 2 (Aqp2) protein in the apical membrane of tubular epithelial cells were decreased in Pdcd10- and Stk24/25-deficient mice. This loss of Aqp2 was associated with increased expression and membrane targeting of Ezrin and phosphorylated Ezrin, Radixin, Moesin (p-ERM) proteins and impaired intracellular vesicle trafficking. Treatment with Erlotinib, a tyrosine kinase inhibitor promoting exocytosis and inhibiting endocytosis, normalized the expression level and membrane abundance of Aqp2 protein, and partially rescued the water reabsorption defect observed in the Pdcd10-deficient mice. Our current study identified the PDCD10-STK-ERM signaling pathway as a potentially novel pathway required for water balance control by regulating vesicle trafficking and protein abundance of AQP2 in the kidneys.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Aquaporin 2/metabolism , Kidney , Water/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Aquaporin 2/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Kidney/metabolism , Kidney/physiology , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL