Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 499
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 52(D1): D1519-D1529, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38000385

ABSTRACT

The explosive amount of multi-omics data has brought a paradigm shift both in academic research and further application in life science. However, managing and reusing the growing resources of genomic and phenotype data points presents considerable challenges for the research community. There is an urgent need for an integrated database that combines genome-wide association studies (GWAS) with genomic selection (GS). Here, we present CropGS-Hub, a comprehensive database comprising genotype, phenotype, and GWAS signals, as well as a one-stop platform with built-in algorithms for genomic prediction and crossing design. This database encompasses a comprehensive collection of over 224 billion genotype data and 434 thousand phenotype data generated from >30 000 individuals in 14 representative populations belonging to 7 major crop species. Moreover, the platform implemented three complete functional genomic selection related modules including phenotype prediction, user model training and crossing design, as well as a fast SNP genotyper plugin-in called SNPGT specifically built for CropGS-Hub, aiming to assist crop scientists and breeders without necessitating coding skills. CropGS-Hub can be accessed at https://iagr.genomics.cn/CropGS/.


Subject(s)
Crops, Agricultural , Databases, Genetic , Genomics , Genotype , Phenotype , Crops, Agricultural/genetics , Genome , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Internet
2.
Plant J ; 117(1): 177-192, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37797086

ABSTRACT

'Living fossils', that is, ancient lineages of low taxonomic diversity, represent an exceptional evolutionary heritage, yet we know little about how demographic history and deleterious mutation load have affected their long-term survival and extinction risk. We performed whole-genome sequencing and population genomic analyses on Dipteronia sinensis and D. dyeriana, two East Asian Tertiary relict trees. We found large-scale genome reorganizations and identified species-specific genes under positive selection that are likely involved in adaptation. Our demographic analyses suggest that the wider-ranged D. sinensis repeatedly recovered from population bottlenecks over late Tertiary/Quaternary periods of adverse climate conditions, while the population size of the narrow-ranged D. dyeriana steadily decreased since the late Miocene, especially after the Last Glacial Maximum (LGM). We conclude that the efficient purging of deleterious mutations in D. sinensis facilitated its survival and repeated demographic recovery. By contrast, in D. dyeriana, increased genetic drift and reduced selection efficacy, due to recent severe population bottlenecks and a likely preponderance of vegetative propagation, resulted in fixation of strongly deleterious mutations, reduced fitness, and continuous population decline, with likely detrimental consequences for the species' future viability and adaptive potential. Overall, our findings highlight the significant impact of demographic history on levels of accumulation and purging of putatively deleterious mutations that likely determine the long-term survival and extinction risk of Tertiary relict trees.


Subject(s)
Fossils , Inbreeding , Trees , Animals , Genetic Variation , Metagenomics , Mutation , Trees/genetics
3.
J Cell Mol Med ; 28(11): e18484, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842124

ABSTRACT

As an important protein encoded by hepatitis B virus (HBV), HBV X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). It has been shown that seven in absentia homologue 1 (SIAH1) could regulates the degradation of HBx through the ubiquitin-proteasome pathway. However, as a member of SIAH family, the regulatory effects of SIAH2 on HBx remain unclear. In this study, we first confirmed that SIAH2 could reduce the protein levels of HBx depending on its E3 ligase activity. Moreover, SIAH2 interacted with HBx and induced its K48-linked polyubiquitination and proteasomal degradation. Furthermore, we provided evidence that SIAH2 inhibits HBx-associated HCC cells proliferation by regulating HBx. In conclusion, our study identified a novel role for SIAH2 in promoting HBx degradation and SIAH2 exerts an inhibitory effect in the proliferation of HBx-associated HCC through inducing the degradation of HBx. Our study provides a new idea for the targeted degradation of HBx and may have great huge significance into providing novel evidence for the targeted therapy of HBV-infected HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Proliferation , Hepatitis B virus , Liver Neoplasms , Nuclear Proteins , Proteolysis , Trans-Activators , Ubiquitin-Protein Ligases , Ubiquitination , Viral Regulatory and Accessory Proteins , Humans , Viral Regulatory and Accessory Proteins/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Trans-Activators/metabolism , Trans-Activators/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/virology , Liver Neoplasms/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Hepatitis B virus/metabolism , Hepatitis B virus/pathogenicity , Cell Line, Tumor , Signal Transduction , Hep G2 Cells
4.
Biochem Biophys Res Commun ; 726: 150259, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38909535

ABSTRACT

Hypoxic-ischemic brain damage (HIBD) in the perinatal period is an important cause of cerebral damage and long-term neurological sequelae, and can place much pressure on families and society. Our previous study demonstrated that miRNA-326 reduces neuronal apoptosis by up-regulating the δ-opioid receptor (DOR) under oxygen-glucose deprivation in vitro. In the present study, we aimed to explore the neuroprotective effects of the miRNA-326/DOR axis by inhibiting apoptosis in HIBD using neonatal miRNA-326 knockout mice. Neonatal C57BL/6 mice, neonatal miRNA-326 knockout mice, and neonatal miRNA-326 knockout mice intraperitoneally injected with the DOR inhibitor naltrindole were treated with hypoxic-ischemia (HI). Neurological deficit scores, magnetic resonance imaging, terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end labeling, and Caspase-3, Bax, and B-cell lymphoma 2 (Bcl-2) expression were evaluated on day 2 after HI. Neurobehavioral analyses were performed on days 2 and 28 after HI. Additionally, the Morris water maze test was conducted on days 28. Compared with HI-treated neonatal C57BL/6 mice, HI-treated neonatal miRNA-326 knockout mice had higher neurological deficit scores, smaller cerebral infarction areas, and improved motor function, reaction ability, and long-term spatial learning and memory. These effects were likely the result of inhibiting apoptosis; the DOR inhibitor reversed these neuroprotective effects. Our findings indicate that miRNA-326 knockout plays a neuroprotective effect in neonatal HIBD by inhibiting apoptosis via the target gene DOR.

5.
J Transl Med ; 22(1): 266, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468254

ABSTRACT

BACKGROUND: The clinical routine test of HBV-specific T cell reactivity is still limited due to the high polymorphisms of human leukocyte antigens (HLA) in patient cohort and the lack of universal detection kit, thus the clinical implication remains disputed. METHODS: A broad-spectrum peptide library, which consists of 103 functionally validated CD8+ T-cell epitopes spanning overall HBsAg, HBeAg, HBx and HBpol proteins and fits to the HLA polymorphisms of Chinese and Northeast Asian populations, was grouped into eight peptide pools and was used to establish an ELISpot assay for enumerating the reactive HBV-specific T cells in PBMCs. Totally 294 HBV-infected patients including 203 ones with chronic hepatitis B (CHB), 13 ones in acute resolved stage (R), 52 ones with liver cirrhosis (LC) and 26 ones with hepatocellular carcinoma (HCC) were detected, and 33 CHB patients were longitudinally monitored for 3 times with an interval of 3-5 months. RESULTS: The numbers of reactive HBV-specific T cells were significantly correlated with ALT level, HBsAg level, and disease stage (R, CHB, LC and HCC), and R patients displayed the strongest HBV-specific T cell reactivity while CHB patients showed the weakest one. For 203 CHB patients, the numbers of reactive HBV-specific T cells presented a significantly declined trend when the serum viral DNA load, HBsAg, HBeAg or ALT level gradually increased, but only a very low negative correlation coefficient was defined (r = - 0.21, - 0.21, - 0.27, - 0.079, respectively). Different Nucleotide Analogs (NUCs) did not bring difference on HBV-specific T cell reactivity in the same duration of treatment. NUCs/pegIFN-α combination led to much more reactive HBV-specific T cells than NUCs monotherapy. The dynamic numbers of reactive HBV-specific T cells were obviously increasing in most CHB patients undergoing routine treatment, and the longitudinal trend possess a high predictive power for the hepatitis progression 6 or 12 months later. CONCLUSION: The presented method could be developed into an efficient reference method for the clinical evaluation of cellular immunity. The CHB patients presenting low reactivity of HBV-specific T cells have a worse prognosis for hepatitis progression and should be treated using pegIFN-α to improve host T-cell immunity.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Hepatitis B virus , Hepatitis B Surface Antigens , Hepatitis B e Antigens , Peptide Library , Epitopes, T-Lymphocyte/therapeutic use , Liver Cirrhosis , DNA, Viral
6.
Bioorg Med Chem Lett ; : 129862, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944398

ABSTRACT

Chronic pain is a common and challenging clinical problem that significantly impacts patients' quality of life. The sodium channel Nav1.8 plays a crucial role in the occurrence and development of chronic pain, making it one of the key targets for treating chronic pain. In this article, we combined virtual screening with cell membrane chromatography techniques to establish a novel method for rapid high-throughput screening of selective Nav1.8 inhibitors. Using this approach, we identified a small molecule compound 6, which not only demonstrated high affinity and inhibitory activity against Nav1.8 but also exhibited significant inhibitory effects on CFA-induced chronic inflammatory pain. Compared to the positive drug VX-150, compound 6 showed a more prolonged analgesic effect making it a promising candidate as a Nav1.8 inhibitor with potential clinical applications. This discovery provides a new therapeutic option for the treatment of chronic pain.

7.
Inorg Chem ; 63(8): 3642-3647, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38346447

ABSTRACT

Two X-ray scintillators based on organic-inorganic hybrids were constructed by judiciously incorporating lanthanide cations and organic ligands within a single material. The obtained Eu-pba and Tb-pba not only feature excellent radiation, hydrolytic, and thermal stabilities but also exhibit a linear response to the X-ray dose rate with detection limits of 4.92 and 3.17 µGy s-1, respectively. We further present a flexible scintillator film fabricated by embedding Tb-pba in a polydimethylsiloxane (PDMS) polymer. Their incorporation enables X-ray imaging with a spatial resolution of approximately 10 lp mm-1. These results emphasize the potential of lanthanide organic-inorganic hybrids to achieve outstanding performance in X-ray scintillation and imaging.

8.
Europace ; 26(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38584395

ABSTRACT

AIMS: A few studies have reported the effect and safety of pulsed field ablation (PFA) catheters for ablating atrial fibrillation (AF), which were mainly based on basket-shaped or flower-shaped designs. However, the clinical application of a circular-shaped multi-electrode catheter with magnetic sensors is very limited. To study the efficacy and safety of a PFA system in patients with paroxysmal AF using a circular-shaped multi-electrode catheter equipped with magnetic sensors for pulmonary vein isolation (PVI). METHODS AND RESULTS: A novel proprietary bipolar PFA system was used for PVI, which utilized a circular-shaped multi-electrode catheter with magnetic sensors and allowed for three-dimensional model reconstruction, mapping, and ablation in one map. To evaluate the efficacy, efficiency, and safety of this PFA system, a prospective, multi-centre, single-armed, pre-market clinical study was performed. From July 2021 to December 2022, 151 patients with paroxysmal AF were included and underwent PVI. The study examined procedure time, immediate success rate, procedural success rate at 12 months, and relevant complications. In all 151 patients, all the pulmonary veins were acutely isolated using the studied system. Pulsed field ablation delivery was 78.4 ± 41.8 times and 31.3 ± 16.7 ms per patient. Skin-to-skin procedure time was 74.2 ± 29.8 min, and fluoroscopy time was 13.1 ± 7.6 min. The initial 11 (7.2%) cases underwent procedures with deep sedation anaesthesia, and the following cases underwent local anaesthesia. In the initial 11 cases, 4 cases (36.4%) presented transient vagal responses, and the rest were all successfully preventatively treated with atropine injection and rapid fluid infusion. No severe complications were found during or after the procedure. During follow-up, 3 cases experienced atrial flutter, and 11 cases had AF recurrence. The estimated 12-month Kaplan-Meier of freedom from arrhythmia was 88.4%. CONCLUSION: The PFA system, comprised of a circular PFA catheter with magnetic sensors, could rapidly achieve PVI under three-dimensional guidance and demonstrated excellent safety with comparable effects.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Pulmonary Veins/surgery , Treatment Outcome , Prospective Studies , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Catheters , Catheter Ablation/adverse effects , Catheter Ablation/methods , Magnetic Phenomena , Recurrence
9.
Scand J Clin Lab Invest ; 84(3): 202-210, 2024 May.
Article in English | MEDLINE | ID: mdl-38683948

ABSTRACT

Early and differential diagnosis of sepsis is essential to avoid unnecessary antibiotic use and further reduce patient morbidity and mortality. Here, we aimed to identify predictors of sepsis and advance a machine-learning strategy to predict sepsis-induced respiratory tract infection (RTI). Patients with sepsis and RTI were selected via retrospective analysis, and essential population characteristics and laboratory parameters were recorded. To improve the performance of the primary model and avoid over-fitting, a recursive feature elimination with cross-validation (RFECV) strategy was used to screen the optimal subset of biomarkers and construct nine machine-learning models based on this subset; the average accuracy, precision, recall, and F1-score were used for evaluation of the models. We identified 430 patients with sepsis and 686 patients with RTI. A total of 39 features were collected, with 23 features identified for initial model construction. Using the RFECV algorithm, we found that the XGBoost classifier, which only needed to include seven biomarkers, demonstrated the best performance among all prediction models, with an average accuracy of 89.24 ± 2.28, while the Ridge classifier, which included 11 biomarkers, had an average accuracy of only 83.87 ± 4.69. The remaining models had prediction accuracies greater than 88%. We developed nine models for predicting sepsis using a strategy that combined RFECV with machine learning. Among these models, the XGBoost classifier, which included seven biomarkers, showed the best performance and highest accuracy for predicting sepsis and may be a promising tool for the timely identification of sepsis.


Subject(s)
Algorithms , Biomarkers , Machine Learning , Respiratory Tract Infections , Sepsis , Humans , Sepsis/diagnosis , Sepsis/blood , Biomarkers/blood , Respiratory Tract Infections/diagnosis , Male , Female , Aged , Middle Aged , Retrospective Studies
10.
J Environ Manage ; 357: 120663, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38552509

ABSTRACT

Wetlands, as core habitats for supporting waterbird diversity, provide a variety of ecosystem services through diverse ecosystem functioning. Wetland degradation and wetland-habitat loss undermine the relationship between biodiversity-ecosystem functioning (BEF), affecting the diversity of habitats and waterbirds. The conservation of waterbird diversity is closely linked to the proper functioning of wetland ecosystems (nutrient cycling, energy storage, and productivity). Waterbirds have complex habitat preferences and sensitivities, which affect biotic interactions. By highlighting the importance of temporal and spatial scales guided by BEF, a habitat-waterbird conservation framework is presented (BEF relationships are described at three levels: habitat, primary producers, and waterbird diversity). We present a novel perspective on habitat conservation for waterbirds by incorporating research on the effects of biodiversity and ecosystem functioning to address the crucial challenges in global waterbird diversity loss, ecosystem degradation, and habitat conservation. Last, it is imperative to prioritize strategies of habitat protection with the incorporation of BEF for future waterbird conservation.


Subject(s)
Ecosystem , Wetlands , Conservation of Natural Resources , Biodiversity , Bicycling
11.
Zhongguo Zhong Yao Za Zhi ; 49(2): 509-517, 2024 Jan.
Article in Zh | MEDLINE | ID: mdl-38403326

ABSTRACT

This study investigated the absorption profile of Wuwei Qingzhuo San in different intestinal segments and the absorption characteristics of its alkaloids(piperine, piperanine, piperlonguminine, and dihydropiperlonguminine). The everted gut sac model was established, and the chemical components of Wuwei Qingzhuo San in different intestinal segments were detected by UPLC-Q-TOF-MS. The content of piperine, piperanine, piperlonguminine, and dihydropiperlonguminine in intestinal absorption fluid was determined by UPLC-Q-TRAP-MS and the absorption parameters were calculated. The absorption characteristics in different intestinal segments at different time were analyzed. As a result, 27, 27, 8, and 6 absorbent components from Wuwei Qingzhuo San were detected in the intestinal cyst fluid of jejunum, ileum, duodenum, and colon by UPLC-Q-TOF-MS technology, respectively. It was also found that piperine, piperanine, piperlonguminine, and dihydropiperlonguminine from Wuwei Qingzhuo San showed linear absorption in various intestinal segments, with r values exceeding 0.9. In terms of absorption content, the components were ranked as piperine>piperanine>dihydropiperlonguminine>piperlonguminine in various intestinal segments, but the absorption rate and mechanism of each component varied. The results demonstrate that the absorption of the components of Wuwei Qingzhuo San in different intestinal segments is selective and is not a simple semi-permeable membrane permeation process.


Subject(s)
Alkaloids , Piperidines , Polyunsaturated Alkamides , Benzodioxoles , Intestinal Absorption
12.
BMC Genomics ; 24(1): 497, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644405

ABSTRACT

BACKGROUND: Growing evidence has shown that gut microbiome composition is associated with breast cancer (BC), but the causality remains unknown. We aimed to investigate the link between BC prognosis and the gut microbiome at various oestrogen receptor (ER) statuses. METHODS: We performed a genome-wide association study (GWAS) to analyse the gut microbiome of BC patients, the dataset for which was collected by the Breast Cancer Association Consortium (BCAC). The analysis was executed mainly via inverse variance weighting (IVW); the Mendelian randomization (MR) results were verified by heterogeneity tests, sensitivity analysis, and pleiotropy analysis. RESULTS: Our findings identified nine causal relationships between the gut microbiome and total BC cases, with ten and nine causal relationships between the gut microbiome and ER-negative (ER-) and ER-positive (ER+) BC, respectively. The family Ruminococcaceae and genus Parabacteroides were most apparent among the three categories. Moreover, the genus Desulfovibrio was expressed in ER- BC and total BC, whereas the genera Sellimonas, Adlercreutzia and Rikenellaceae appeared in the relationship between ER + BC and total BC. CONCLUSION: Our MR inquiry confirmed that the gut microbiota is causally related to BC. This further explains the link between specific bacteria for prognosis of BC at different ER statuses. Considering that potential weak instrument bias impacts the findings and that the results are limited to European females due to data constraints, further validation is crucial.


Subject(s)
Breast Neoplasms , Gastrointestinal Microbiome , Female , Humans , Breast Neoplasms/genetics , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Prognosis , Bacteroidetes , Clostridiales , Receptors, Estrogen/genetics
13.
Small ; 19(11): e2206487, 2023 03.
Article in English | MEDLINE | ID: mdl-36642861

ABSTRACT

Cardiovascular disease is a leading cause of disability and death worldwide. Although the survival rate of patients with heart diseases can be improved with contemporary pharmacological treatments and surgical procedures, none of these therapies provide a significant improvement in cardiac repair and regeneration. Stem cell-based therapies are a promising approach for functional recovery of damaged myocardium. However, the available stem cells are difficult to differentiate into cardiomyocytes, which result in the extremely low transplantation efficiency. Nanomaterials are widely used to regulate the myocardial differentiation of stem cells, and play a very important role in cardiac tissue engineering. This study discusses the current status and limitations of stem cells and cell-derived exosomes/micro RNAs based cardiac therapy, describes the cardiac repair mechanism of nanomaterials, summarizes the recent advances in nanomaterials used in cardiac repair and regeneration, and evaluates the advantages and disadvantages of the relevant nanomaterials. Besides discussing the potential clinical applications of nanomaterials in cardiac therapy, the perspectives and challenges of nanomaterials used in stem cell-based cardiac repair and regeneration are also considered. Finally, new research directions in this field are proposed, and future research trends are highlighted.


Subject(s)
Myocardium , Nanostructures , Humans , Myocytes, Cardiac , Stem Cells , Regeneration
14.
Small ; 19(10): e2206782, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36534835

ABSTRACT

Monitoring and shielding of X-ray radiation are of paramount importance across diverse fields. However, they are frequently realized in separate protocols and a single material integrating both functions remained elusive. Herein, a hexanuclear cluster [Th6 (µ3 -OH)4 (µ3 -O)4 (H2 O)6 ](pba)6 (HCOO)6 (Th-pba-0D) incorporating high-Z thorium cations and 3-(pyridin-4-yl)benzoate ligands that can function as a brand-new dual-module platform for visible detection and efficient shielding of ionizing radiation is demonstrated. Th-pba-0D exhibits rather unique reversible radiochromism upon alternating X-ray and UV irradiation. Moreover, the millimeter scale crystal size of Th-pba-0D renders the penetration depth of X-ray visible to naked eye and leads to the unearthing of its high X-ray attenuation efficiency. Indeed, the shielding efficacy of Th-pba-0D is comparable to that of lead glass containing 40% PbO, and a Th-pba-0D pellet with a thickness of merely 1.2 mm can shield 99.73% X-ray (16 keV). These studies portend the possible utilization of thorium-bearing materials as a bifunctional platform for radiation detection and shielding.

15.
New Phytol ; 237(2): 471-482, 2023 01.
Article in English | MEDLINE | ID: mdl-36266960

ABSTRACT

The development of a series of elite maize hybrids has greatly increased crop yield in the past decades. Parental lines of these hybrids usually come from different heterotic groups and contain many genetic differences. Identifications of important quantitative trait genes in the elite hybrids can extend our understanding of heterosis and also help to guide genetic improvement. Here, we mapped a major quantitative trait locus using a linkage population from an elite maize hybrid Zhengdan958 and identified ZmLNG1 as the causative gene controlling multiple morphologic traits in maize. A 6-kb deletion in one parental line of the hybrid leads to the fusion of ZmLNG1 with its nearby gene. The fusion event prevents the C-terminal of ZmLNG1 from interacting with ZmTON1, which resulted in the change of plant architecture. Further experiments demonstrated that ZmLNG1 could act as a mediator to connect ZmTON1 and ZmOFPs, which belong to another type of plant morphological regulatory proteins, thereby affecting the phosphorylation level of ZmOFPs. These results demonstrate the importance of ZmLNG1 in forming the TON1-TRM-PP2A complex and provide a model for the regulation of plant organ morphology by TON1-recruiting motifs (TRMs) and Ovate family proteins (OFPs).


Subject(s)
Hybrid Vigor , Zea mays , Zea mays/genetics , Quantitative Trait Loci , Phenotype
16.
Plant Physiol ; 189(1): 215-229, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35148397

ABSTRACT

Nitrate allocation in Arabidopsis (Arabidopsis thaliana) represents an important mechanism for mediating plant environmental adaptation. However, whether this mechanism occurs or has any physiological/agronomic importance in the ammoniphilic plant rice (Oriza sativa L.) remains unknown. Here, we address this question through functional characterization of the Nitrate transporter 1/Peptide transporter Family (NPF) transporter gene OsNPF7.9. Ectopic expression of OsNPF7.9 in Xenopus oocytes revealed that the gene encodes a low-affinity nitrate transporter. Histochemical and in-situ hybridization assays showed that OsNPF7.9 expresses preferentially in xylem parenchyma cells of vasculature tissues. Transient expression assays indicated that OsNPF7.9 localizes to the plasma membrane. Nitrate allocation from roots to shoots was essentially decreased in osnpf7.9 mutants. Biomass, grain yield, and nitrogen use efficiency (NUE) decreased in the mutant dependent on nitrate availability. Further analysis demonstrated that nitrate allocation mediated by OsNPF7.9 is essential for balancing rice growth and stress tolerance. Moreover, our research identified an indica-japonica divergent single-nucleotide polymorphism occurring in the coding region of OsNPF7.9, which correlates with enhanced nitrate allocation to shoots of indica rice, revealing that divergent nitrate allocation might represent an important component contributing to the divergent NUE between indica and japonica subspecies and was likely selected as a favorable trait during rice breeding.


Subject(s)
Arabidopsis , Oryza , Arabidopsis/genetics , Arabidopsis/metabolism , Nitrate Transporters , Nitrates/metabolism , Nitrogen/metabolism , Oryza/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
17.
Nephrol Dial Transplant ; 38(4): 992-1001, 2023 03 31.
Article in English | MEDLINE | ID: mdl-36124763

ABSTRACT

BACKGROUND: Hippocampal alterations have been implicated in the pathophysiology of cognitive impairment in hemodialysis patients. The hippocampus consists of several distinct subfields, and the molecular mechanisms underlying cognition might be associated with specific hippocampal subfield volume changes. However, this has not yet been investigated in hemodialysis patients. This study aimed to explore volumetric abnormalities in hippocampal subfields in regular hemodialysis patients. METHODS: High-resolution T1-weighted structural images were collected in 61 subjects including 36 hemodialysis patients and 25 healthy controls. A state-of-the-art hippocampal segmentation approach was adopted to segment the hippocampal subfields. Group differences in hippocampal subfield volumes were assessed in Python with a statsmodels module using an ordinary least squares regression with age and sex as nuisance effects. RESULTS: Hemodialysis patients had significantly smaller volumes in the bilateral hippocampus (P < .05/2, Bonferroni corrected), cornu ammonis 1 (CA1), CA4, granule cell and molecular layer of the dentate gyrus, hippocampus-amygdala transition area and molecular layer of the hippocampus than healthy controls (P < .05/24, Bonferroni corrected). Hemodialysis patients also had lower volumes in the left hippocampal tail and right fimbria than healthy controls (P < .05/24, Bonferroni corrected). Hippocampal subfield volumes were associated with neuropsychological test scores, the duration of disease and hemoglobin levels. CONCLUSIONS: We found smaller hippocampal subfield volumes in hemodialysis patients, which were associated with impaired cognition, supporting their role in memory disturbance in the hemodialysis population. However, multiple clinical factors may have confounded the results, and therefore, the interpretation of these results needs to be cautious.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Hippocampus/diagnostic imaging , Cognition , Neuropsychological Tests
18.
Inorg Chem ; 62(41): 16669-16672, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37795820

ABSTRACT

Studies about the reaction of ZrIV ions with peroxides and the properties of the resulting zirconium peroxide clusters are significant for understanding zirconium chemistry in the nuclear fuel cycle and the advancement of less explored Group IV metal oxo clusters. Herein, an octanuclear zirconium peroxide cluster, designated as Zr8, was synthesized and characterized by using multiple techniques. Crystallographic analysis revealed that Zr8 has a ringlike structure and unusual positive charges, while tetravalent metal oxo clusters are mostly neutral. In situ variable-temperature Raman spectra indicated that Zr8 has unexpected thermal stability, which may be related to the strong interaction between ZrIV ions and peroxide groups. Small-angle X-ray scattering data showed that Zr8 self-assembled in the reactant solution prior to crystallization. In short, Zr8 expands the limited family of zirconium peroxide clusters and enriches the properties of metal peroxides.

19.
Inorg Chem ; 62(21): 8158-8165, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37186814

ABSTRACT

Actinide-bearing metal-organic frameworks (MOFs) encompass intriguing structures and properties, but the radioactivity of actinide cripples their applications. Herein, we have constructed a new thorium-based MOF (Th-BDAT) as a bifunctional platform for the adsorption and detection of radioiodine, a more radioactive fission product that can readily spread through the atmosphere in its molecular form or via solution as anionic species. The iodine capture within the framework of Th-BDAT from both the vapor phase and the cyclohexane solution has been verified, showing that Th-BDAT features maximum I2 adsorption capacities (Qmax) of 959 and 1046 mg/g, respectively. Notably, the Qmax of Th-BDAT toward I2 from cyclohexane solution ranks among the highest value for Th-MOFs reported to date. Furthermore, incorporating highly extended and π-electron-rich BDAT4- ligands renders Th-BDAT as a luminescent chemosensor whose emission can be selectively quenched by iodate with a detection limit of 1.367 µM. Our findings thus foreshadow promising directions that might unlock the full potential of actinide-based MOFs from the point of view of practical application.

20.
Mol Breed ; 43(3): 19, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37313299

ABSTRACT

Purple/red appearance is one of the common phenotypic variations in leaves, stems, and siliques of oilseed rape (Brassica napus L.) but very rare in flowers. In this study, the causal genes for the purple/red traits in stems and flowers in two accessions of oilseed rape (DH_PR and DH_GC001, respectively) derived from the wide hybridization were fine mapped, and candidate genes were determined by methods combined with bulked segregant analysis (BSA) and RNA-seq analysis. Both traits of purple stem and red flowers were mapped to the locus as AtPAP2 homologous genes (BnaPAP2.C6a and BnaPAP2.A7b, respectively) belonging to the R2R3-MYB family. Sequence comparisons of full-length allelic genes revealed several InDels and SNPs in intron 1 as well as exons, and completely different promoter region of BnaPAP2.C6a and a 211 bp insertion was identified in the promoter region of BnaPAP2.A7b of DH_GC001. Our results not only contribute to a better understanding of anthocyanin inheritance in B. napus, but also provide a useful toolbox for future breeding of cultivars with purple/red traits through the combination of different functional alleles and homologs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01365-5.

SELECTION OF CITATIONS
SEARCH DETAIL