Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Magn Reson Imaging ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449389

ABSTRACT

BACKGROUND: Different MR elastography (MRE) systems may produce different stiffness measurements, making direct comparison difficult in multi-center investigations. PURPOSE: To assess the repeatability and reproducibility of liver stiffness measured by three typical MRE systems. STUDY TYPE: Prospective. POPULATION/PHANTOMS: Thirty volunteers without liver disease history (20 males, aged 21-28)/5 gel phantoms. FIELD STRENGTH/SEQUENCE: 3.0 T United Imaging Healthcare (UIH), 1.5 T Siemens Healthcare, 3.0 T General Electric Healthcare (GE)/Echo planar imaging-based MRE sequence. ASSESSMENT: Wave images of volunteers and phantoms were acquired by three MRE systems. Tissue stiffness was evaluated by two observers, while phantom stiffness was assessed automatically by code. The reproducibility across three MRE systems was quantified based on the mean stiffness of each volunteer and phantom. STATISTICAL TESTS: Intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman analyses were used to assess the interobserver reproducibility, the interscan repeatability, and the intersystem reproducibility. Paired t-tests were performed to assess the interobserver and interscan variation. Friedman tests with Dunn's multiple comparison correction were performed to assess the intersystem variation. P values less than 0.05 indicated significant difference. RESULTS: The reproducibility of stiffness measured by the two observers demonstrated consistency with ICC > 0.92, CV < 4.32%, Mean bias < 2.23%, and P > 0.06. The repeatability of measurements obtained using the electromagnetic system for the liver revealed ICC > 0.96, CV < 3.86%, Mean bias < 0.19%, P > 0.90. When considering the range of reproducibility across the three systems for liver evaluations, results ranged with ICCs from 0.70 to 0.87, CVs from 6.46% to 10.99%, and Mean biases between 1.89% and 6.30%. Phantom studies showed similar results. The values of measured stiffness differed across all three systems significantly. DATA CONCLUSION: Liver stiffness values measured from different MRE systems can be different, but the measurements across the three MRE systems produced consistent results with excellent reproducibility. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.

2.
Article in English | MEDLINE | ID: mdl-38906671

ABSTRACT

BACKGROUND AND PURPOSE: Preoperative assessment of meningioma consistency is beneficial for optimizing surgical strategy and prognosis of patients. We aim to develop a non-invasive prediction model for meningioma consistency utilizing magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI). MATERIALS AND METHODS: Ninety-four patients (52yr ± 22, 69 females, 25 males) diagnosed with meningioma were recruited in the study. Each patient underwent preoperative T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), DTI, and MRE. Combined MRE-DTI model was developed based on multiple logistic regression. Intraoperative tumor descriptions served as clinical criteria for evaluating meningioma consistency. The diagnostic efficacy in determining meningioma consistency was evaluated using receiver operating characteristic (ROC) curve. Further validation was conducted in twenty-seven stereotactic biopsies using indentation tests and underlying mechanism was investigated by histologic analysis. RESULTS: Among all the imaging modalities, MRE demonstrated the highest efficacy with the shear modulus magnitude (|G*|) achieving an area under the curve (AUC) of 0.81 (95% CI: 0.70-0.93). When combined with DTI, the diagnostic accuracy further increased (AUC: 0.88, 95% CI: 0.78-0.97), surpassing any modality alone. Indentation measurement based on stereotactic biopsies further demonstrated that the MRE-DTI model was suitable for predicting intra-tumor consistency. Histological analysis suggested that meningioma consistency may be correlated with tumor cell density and fibrous content. CONCLUSIONS: The MRE-DTI combined model is effective in noninvasive prediction of meningioma consistency. ABBREVIATIONS: MRE = magnetic resonance elastography; FA = fractional anisotropy; ROC = receiver operating characteristic; AUC = area under curve.

3.
IEEE Trans Biomed Eng ; 71(9): 2590-2598, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38530718

ABSTRACT

Magnetic resonance elastography (MRE) of brain relies on inducing and measuring shear waves in the brain. However, studies have shown vibration could induce changes in cerebral blood flow (CBF), which has a modulation effect and can affect the biomechanical properties measured. OBJECTIVE: This work demonstrates the initial prototype of the indirect excitation method, which can generate shear waves in the brain with minimal changes in CBF. METHODS: A simple system was designed to produce stable vibrations underneath the neck. Instead of directly stimulating the skull, shear waves were indirectly transmitted to the brain through the spine and brainstem. RESULTS: Phantom results showed that the proposed actuator did not interfere with the routine imaging sequence and successfully generated multifrequency shear waves. When compared with the conventional direct head stimulation method, brain MRE results from the proposed actuator showed no significant differences in terms of intraclass correlation coefficients (ICC) and coefficients of variation (CV). Moreover, the octahedral shear strain (OSS) generated by the indirect excitation in the frontal and parietal lobes decreased by 25.96% and 16.73% respectively. Evaluation of CBF in healthy volunteers revealed no significant changes for the indirect excitation method, whereas significant decreases in CBF were observed in four subregions when employing direct excitation. CONCLUSION: The proposed actuator offers a more accurate and comfortable approach to MRE measurements while causing minimal CBF alterations. SIGNIFICANCE: This work presents the first demonstration of an indirect excitation brain MRE system that minimizes CBF changes, thus holding potential for future applications of brain MRE.


Subject(s)
Brain , Cerebrovascular Circulation , Elasticity Imaging Techniques , Phantoms, Imaging , Humans , Elasticity Imaging Techniques/methods , Cerebrovascular Circulation/physiology , Brain/physiology , Brain/diagnostic imaging , Brain/blood supply , Adult , Male , Vibration , Female
SELECTION OF CITATIONS
SEARCH DETAIL