Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
Add more filters

Publication year range
1.
BMC Bioinformatics ; 24(1): 423, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940858

ABSTRACT

The causes of many complex human diseases are still largely unknown. Genetics plays an important role in uncovering the molecular mechanisms of complex human diseases. A key step to characterize the genetics of a complex human disease is to unbiasedly identify disease-associated gene transcripts on a whole-genome scale. Confounding factors could cause false positives. Paired design, such as measuring gene expression before and after treatment for the same subject, can reduce the effect of known confounding factors. However, not all known confounding factors can be controlled in a paired/match design. Model-based clustering, such as mixtures of hierarchical models, has been proposed to detect gene transcripts differentially expressed between paired samples. To the best of our knowledge, no model-based gene clustering methods have the capacity to adjust for the effects of covariates yet. In this article, we proposed a novel mixture of hierarchical models with covariate adjustment in identifying differentially expressed transcripts using high-throughput whole-genome data from paired design. Both simulation study and real data analysis show the good performance of the proposed method.


Subject(s)
Gene Expression Profiling , Genome , Humans , Computer Simulation , Cluster Analysis , Gene Expression Profiling/methods
2.
J Pharmacol Exp Ther ; 387(2): 188-203, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37679046

ABSTRACT

Pompe disease is a rare glycogen storage disorder caused by a deficiency in the lysosomal enzyme acid α-glucosidase, which leads to muscle weakness, cardiac and respiratory failure, and early mortality. Alglucosidase alfa, a recombinant human acid α-glucosidase, was the first approved treatment of Pompe disease, but its uptake into skeletal muscle via the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) is limited. Avalglucosidase alfa has received marketing authorization in several countries for infantile-onset and/or late-onset Pompe disease. This recently approved enzyme replacement therapy (ERT) was glycoengineered to maximize CIMPR binding through high-affinity interactions with ∼7 bis-M6P moieties. Recently, small molecules like the glucosylceramide synthase inhibitor miglustat were reported to increase the stability of recombinant human acid α-glucosidase, and it was suggested that an increased serum half-life would result in better glycogen clearance. Here, the effects of miglustat on alglucosidase alfa and avalglucosidase alfa stability, activity, and efficacy in Pompe mice were evaluated. Although miglustat increased the stability of both enzymes in fluorescent protein thermal shift assays and when incubated in neutral pH buffer over time, it reduced their enzymatic activity by ∼50%. Improvement in tissue glycogen clearance and transcriptional dysregulation in Pompe mice correlated with M6P levels but not with miglustat coadministration. These results further substantiate the crucial role of CIMPR binding in lysosomal targeting of ERTs. SIGNIFICANCE STATEMENT: This work describes important new insights into the treatment of Pompe disease using currently approved enzyme replacement therapies (ERTs) coadministered with miglustat. Although miglustat increased the stability of ERTs in vitro, there was no positive impact to glycogen clearance and transcriptional correction in Pompe mice. However, increasing mannose-6-phosphate levels resulted in increased cell uptake in vitro and increased glycogen clearance and transcriptional correction in Pompe mice, further underscoring the crucial role of cation-independent mannose-6-phosphate receptor-mediated lysosomal targeting for ERTs.

3.
Bioinformatics ; 37(22): 4269-4271, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34009297

ABSTRACT

SUMMARY: Genome-wide association studies (GWAS) have revealed thousands of genetic loci for common diseases. One of the main challenges in the post-GWAS era is to understand the causality of the genetic variants. Expression quantitative trait locus (eQTL) analysis is an effective way to address this question by examining the relationship between gene expression and genetic variation in a sufficiently powered cohort. However, it is frequently a challenge to determine the sample size at which a variant with a specific allele frequency will be detected to associate with gene expression with sufficient power. This is a particularly difficult task for single-cell RNAseq studies. Therefore, a user-friendly tool to estimate statistical power for eQTL analyses in both bulk tissue and single-cell data is needed. Here, we presented an R package called powerEQTL with flexible functions to estimate power, minimal sample size or detectable minor allele frequency for both bulk tissue and single-cell eQTL analysis. A user-friendly, program-free web application is also provided, allowing users to calculate and visualize the parameters interactively. AVAILABILITY AND IMPLEMENTATION: The powerEQTL R package source code and online tutorial are freely available at CRAN: https://cran.r-project.org/web/packages/powerEQTL/. The R shiny application is publicly hosted at https://bwhbioinfo.shinyapps.io/powerEQTL/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Humans , Sample Size , Software , Gene Frequency
4.
Am J Respir Crit Care Med ; 202(9): 1225-1236, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32551799

ABSTRACT

Rationale: Genetic association studies have identified rs2076295 in association with idiopathic pulmonary fibrosis (IPF). We hypothesized that rs2076295 is the functional variant regulating DSP (desmoplakin) expression in human bronchial epithelial cells, and DSP regulates extracellular matrix-related gene expression and cell migration, which is relevant to IPF development.Objectives: To determine whether rs2076295 regulates DSP expression and the function of DSP in airway epithelial cells.Methods: Using CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 editing (including regional deletion, indel, CRISPR interference, and single-base editing), we modified rs2076295 and measured DSP expression in edited 16HBE14o- and primary airway epithelial cells. Cellular integrity, migration, and genome-wide gene expression changes were examined in 16HBE14o- single colonies with DSP knockout. The expression of DSP and its relevant matrix genes was measured by quantitative PCR and also analyzed in single-cell RNA-sequencing data from control and IPF lungs.Measurements and Main Results:DSP is expressed predominantly in bronchial and alveolar epithelial cells, with reduced expression in alveolar epithelial cells in IPF lungs. The deletion of the DNA region-spanning rs2076295 led to reduced expression of DSP, and the edited rs2076295GG 16HBE14o- line has lower expression of DSP than the rs2076295TT lines. Knockout of DSP in 16HBE14o- cells decreased transepithelial resistance but increased cell migration, with increased expression of extracellular matrix-related genes, including MMP7 and MMP9. Silencing of MMP7 and MMP9 abolished increased migration in DSP-knockout cells.Conclusions: rs2076295 regulates DSP expression in human airway epithelial cells. The loss of DSP enhances extracellular matrix-related gene expression and promotes cell migration, which may contribute to the pathogenesis of IPF.


Subject(s)
Desmoplakins/genetics , Gene Expression , Genetic Variation , Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/physiopathology , Alveolar Epithelial Cells , Epithelial Cells , Humans
5.
Thorax ; 75(12): 1047-1057, 2020 12.
Article in English | MEDLINE | ID: mdl-33077617

ABSTRACT

INTRODUCTION: Airway epithelial cells are recognised as an essential controller for the initiation and perpetuation of asthmatic inflammation, yet the detailed mechanisms remain largely unknown. This study aims to investigate the roles and mechanisms of the mechanistic target of rapamycin (MTOR)-autophagy axis in airway epithelial injury in asthma. METHODS: We examined the MTOR-autophagy signalling in airway epithelium from asthmatic patients or allergic mice induced by ovalbumin or house dust mites, or in human bronchial epithelial (HBE) cells. Furthermore, mice with specific MTOR knockdown in airway epithelium and autophagy-related lc3b-/- mice were used for allergic models. RESULTS: MTOR activity was decreased, while autophagy was elevated, in airway epithelium from asthmatic patients or allergic mice, or in HBE cells treated with IL33 or IL13. These changes were associated with upstream tuberous sclerosis protein 2 signalling. Specific MTOR knockdown in mouse bronchial epithelium augmented, while LC3B deletion diminished allergen-induced airway inflammation and mucus hyperproduction. The worsened inflammation caused by MTOR deficiency was also ameliorated in lc3b-/- mice. Mechanistically, autophagy was induced later than the emergence of allergen-initiated inflammation, particularly IL33 expression. MTOR deficiency increased, while knocking out of LC3B abolished the production of IL25 and the eventual airway inflammation on allergen challenge. Blocking IL25 markedly attenuated the exacerbated airway inflammation in MTOR-deficiency mice. CONCLUSION: Collectively, these results demonstrate that allergen-initiated inflammation suppresses MTOR and induces autophagy in airway epithelial cells, which results in the production of certain proallergic cytokines such as IL25, further promoting the type 2 response and eventually perpetuating airway inflammation in asthma.


Subject(s)
Asthma/metabolism , Inflammation/metabolism , Interleukin-17/biosynthesis , Interleukins/metabolism , TOR Serine-Threonine Kinases/metabolism , Adult , Aged , Allergens , Animals , Asthma/pathology , Asthma/physiopathology , Autophagy/drug effects , Cells, Cultured , Epithelial Cells/metabolism , Female , Gene Knockdown Techniques , Humans , Inflammation/pathology , Interleukin-13/metabolism , Interleukin-13/pharmacology , Interleukin-33/metabolism , Interleukin-33/pharmacology , Male , Mice , Microtubule-Associated Proteins/genetics , Middle Aged , Respiratory Mucosa/physiopathology , Signal Transduction , TOR Serine-Threonine Kinases/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism
6.
Am J Respir Crit Care Med ; 199(1): 32-42, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30153046

ABSTRACT

RATIONALE: Maternal asthma and preeclampsia have independently been reported to be associated with increased asthma incidence in children of affected mothers. Maternal asthma is also associated with increased risk of preeclampsia development. However, the joint effect of these maternal conditions on child asthma risk is unknown. OBJECTIVES: To study whether development of preeclampsia among pregnant women with asthma was associated with higher risk of childhood asthma in the VDAART (Vitamin D Antenatal Asthma Reduction Trial). METHODS: A total of 806 pregnant women and their offspring at high risk of asthma or atopy, who were followed from VDAART enrollment (10-18 wk of gestation) through the child's third birthday, were included in this cohort analysis. Preeclampsia status was determined by chart review, obstetrician diagnosis, and adjudication by a panel of obstetricians. Child asthma was the main outcome as determined by parental report of a physician diagnosis, and the risk of child asthma was also examined if accompanied by recurrent wheeze. The main risk variable of interest was a four-level ordered variable defined for each mother, with values without asthma without preeclampsia, without asthma with preeclampsia, with asthma without preeclampsia, and with asthma with preeclampsia during their pregnancy. We examined the trend of outcome proportions across these categories. To account for differences in maternal and child characteristics, we used a Weibull regression model for interval-censored data to compare the incidence of child asthma by age of 3 years across the maternal variable categories. MEASUREMENTS AND MAIN RESULTS: The incidence of asthma in 3-year-old children was 9.90% (44/445), 17.95% (7/39), 22.11% (65/294), and 32.14% (9/28) among those born to mothers without asthma and without preeclampsia, mothers without asthma with preeclampsia, mothers with asthma without preeclampsia, and mothers with asthma with preeclampsia, respectively. The incidences demonstrated an increasing trend in risk of child asthma across the maternal groups (P for trend <0.001). After accounting for potential confounders and using time to report of childhood asthma as analysis outcome, risk of asthma was greater among children born to mothers with asthma without preeclampsia, compared with mothers without asthma without preeclampsia (adjusted hazard ratio, 2.18; 95% confidence interval, 1.46-3.26). This risk was 50% greater for children born to mothers with asthma who developed preeclampsia during pregnancy (adjusted hazard ratio, 2.68; 95% confidence interval, 1.30-5.61). The trend in asthma and recurrent wheeze proportions across the maternal groups' children also indicated a higher risk for children born to mothers with asthma with preeclampsia (adjusted hazard ratio, 4.73; 95% confidence interval, 2.20-10.07; P for trend <0.001). CONCLUSIONS: Preeclampsia is associated with increased risk of early life childhood asthma in children less than 3 years old over and above that associated with maternal asthma alone. The results implicate the interplay between maternal factors as strong predictors of offspring asthma and in utero maternal-fetal immune perturbations and developmental dysregulations associated with preeclampsia.


Subject(s)
Asthma/complications , Pre-Eclampsia/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Adolescent , Adult , Asthma/epidemiology , Asthma/etiology , Child, Preschool , Female , Gestational Age , Humans , Male , Pregnancy , Risk Factors , Young Adult
7.
Genomics ; 111(3): 500-507, 2019 05.
Article in English | MEDLINE | ID: mdl-29596963

ABSTRACT

Alcohol (EtOH) dosage and exposure time can affect gene expression. However, whether there exists synergistic effect is unknown. Here, we analyzed the hDPSC gene microarray dataset GSE57255 downloaded from Gene Expression Omnibus and found that the interaction between EtOH dosage and exposure time on gene expression are statistically significant for two probes: 201917_s_at near gene SLC25A36 and 217649_at near gene ZFAND5. GeneMania showed that SLC25A36 and ZFAND5 were related to 20 genes, three of which had alcohol-related functions. WebGestalt revealed that the 22 genes were enriched in 10 KEGG pathways, four of which are related to alcoholic diseases. We explored the possible nonlinear interaction effect and got 172 gene probes with significant p-values. However, no significantly enriched pathways based on the 172 probes were detected. Our analyses indicated a possible molecular mechanism that could help explain why alcohol consumption has both deleterious and beneficial effects on human health.


Subject(s)
Ethanol/pharmacology , Stem Cells/metabolism , Alcohol Drinking , Dental Pulp/metabolism , Gene Expression Profiling , Humans , Microarray Analysis , Time
8.
Am J Physiol Renal Physiol ; 316(5): F957-F965, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30864839

ABSTRACT

Ischemia-reperfusion injury represents one of the most common causes of acute kidney injury, a serious and often deadly condition that affects up to 20% of all hospitalized patients in the United States. However, the current standard assay used universally for the diagnosis of acute kidney injury, serum creatinine, does not detect renal damage early in its course. Serendipitously, we found that the immunofluorescent signal of the constitutive podocyte marker podoplanin fades in the glomerulus and intensifies in the tubulointerstitial compartment of the kidney shortly after ischemia-reperfusion injury in 8- to 10-wk-old male C57Bl/6j mice. Therefore, we sought to define the appearance and course of the podoplanin-positive signal in the kidney after ischemia-reperfusion injury. The tubulointerstitial podoplanin-positive signal increased as early as 2 h but persisted for 7 days after ischemia-reperfusion injury. In addition, the strength of this tubulointerstitial signal was directly proportional to the severity of ischemia, and its location shifted from the tubules to interstitial cells over time. Finally, we detected podoplanin in the urine of mice after ischemia, and we observed that an increase in the urine podoplanin-to-creatinine ratio correlated strongly with the onset of renal ischemia-reperfusion injury. Our findings indicate that the measurement of urine podoplanin harbors promising potential for use as a novel biomarker for the early detection of ischemia-reperfusion injury of the kidney.


Subject(s)
Acute Kidney Injury/urine , Membrane Glycoproteins/urine , Podocytes/metabolism , Reperfusion Injury/urine , Acute Kidney Injury/pathology , Animals , Biomarkers/urine , Creatinine/urine , Disease Models, Animal , Male , Mice, Inbred C57BL , Podocytes/pathology , Reperfusion Injury/pathology , Severity of Illness Index , Time Factors , Up-Regulation
9.
Pharmacogenet Genomics ; 29(3): 58-64, 2019 04.
Article in English | MEDLINE | ID: mdl-30562215

ABSTRACT

BACKGROUND: Human Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) have been thought to be a useful model system for pharmacogenomics studies. The purpose of this study was to determine the effect of Epstein-Barr virus transformation on gene expression changes by dexamethasone (Dex) in LCLs and primary B cells (PBCs) derived from the same individuals. PATIENTS AND METHODS: We prepared LCLs and purified PBCs from the same six male donors participating in the Childhood Asthma Management Program clinical trial, and compared mRNA profiles after 6 h incubation with Dex (10 mol/l) or sham buffer. We assessed differential expression and put the list of differentially expressed genes into the web interface of ConsensusPathDB to find the pathway-level interpretation of our genes specified. As a supplementary analysis, we looked at the expression of the Dex-regulated (inducing or repressing) genes in treatment-naive PBCs and LCLs (pre-Dex treatment) from the GSE30916 dataset. RESULTS: By hierarchical clustering, we found clustering of probes by cell types but not by individuals irrespective of Dex treatment. We observed that the Dex-regulated genes significantly overlapped in PBCs and LCLs. In addition, the expression of these genes showed significant correlations between treatment-naive PBCs and LCLs. Common genes showing significantly decreased expressions by the Dex treatment in both cells were enriched in immune responses and proinflammatory signaling pathways. CONCLUSION: Taken together, these results suggest the uses of LCLs are representative of the primary biologic effects of corticosteroids treatment.


Subject(s)
B-Lymphocytes/drug effects , Dexamethasone/pharmacology , Immunity, Cellular/genetics , Inflammation/drug therapy , Asthma/genetics , Asthma/pathology , B-Lymphocytes/pathology , B-Lymphocytes/virology , Dexamethasone/adverse effects , Gene Expression Profiling , Gene Expression Regulation/drug effects , Herpesvirus 4, Human/genetics , Humans , Immunity, Cellular/drug effects , Inflammation/virology , Primary Cell Culture , RNA, Messenger/genetics , Signal Transduction/drug effects , Signal Transduction/immunology
10.
Pharmacogenet Genomics ; 29(3): 65-68, 2019 04.
Article in English | MEDLINE | ID: mdl-30640894

ABSTRACT

Asthma is the most common chronic disease in children. Inhaled corticosteroids (ICS) are the first-line treatment for asthma control, but up to one-third of children have a poor treatment response. The mechanism of ICS resistance is poorly understood, and the role of DNA methylation in ICS treatment response is not known. We examined the association between peripheral blood DNA methylation and ICS treatment response in 152 pediatric persistent asthmatics from the Childhood Asthma Management Program. Response to ICS was measured by the percentage change in forced expiratory volume in 1 s (FEV1) 8 weeks after treatment initiation. The top CpG sites with a nominal P value less than 0.001 were correlated with gene expression using Pearson's and partial correlations. In 152 participants, mean±SD age was 9.8±2.0 years and median change in FEV1 after ICS initiation was 4.6% (interquartile range: 10.4%). A total of 545 CpG sites were differentially methylated (nominal P<0.05), and seven CpG sites had a nominal P value less than 0.001. Relative hypermethylation of cg20434811, cg02822723, cg14066280, cg27254601, and cg23913400 and relative hypomethylation of cg24937126 and cg24711626 were associated with an increase in FEV1 on ICS treatment. One CpG site was associated with gene expression. Relative hypermethylation of cg27254601 was associated with both an increase in FEV1 and BOLA2 expression (ρ=0.25, P=0.02). We identified a novel association between BOLA2 methylation, gene expression, and ICS response as measured by lung function. Pharmacoepigenetics has the potential to detect treatment sensitivity in persistent childhood asthma.


Subject(s)
Adrenal Cortex Hormones/adverse effects , Asthma/drug therapy , DNA Methylation/genetics , Drug Resistance/genetics , Administration, Inhalation , Adolescent , Adrenal Cortex Hormones/administration & dosage , Adrenal Cortex Hormones/genetics , Asthma/genetics , Asthma/pathology , Child , Disease Progression , Female , Forced Expiratory Volume , Humans , Lung/drug effects , Lung/pathology , Male , Proteins/genetics
11.
Thorax ; 74(2): 200-202, 2019 02.
Article in English | MEDLINE | ID: mdl-30021811

ABSTRACT

Cord blood 25-hydroxyvitamin D (25OHD) has been reported in association with risk of early life recurrent wheeze. In a subset of infants who participated in the Vitamin D Antenatal Asthma Reduction Trial, we demonstrated that higher cord blood 25OHD at birth (>31 ng/mL) was associated with a reduced risk of recurrent wheeze in the first year of life. We then identified a module of co-expressed genes associated with cord blood 25OHD levels >31 ng/mL. Genes in this module are involved in biological and immune pathways related to development and progression of asthma pathogenesis including the Notch1 and transforming growth factor-beta signalling pathways.


Subject(s)
Asthma/genetics , Fetal Blood/metabolism , Respiratory Sounds/genetics , Vitamin D/analogs & derivatives , Double-Blind Method , Female , Gene Regulatory Networks/genetics , Genetic Predisposition to Disease , Humans , Infant, Newborn , Male , Pregnancy , Risk Assessment/methods , Vitamin D/blood
12.
Clin Exp Allergy ; 49(9): 1225-1234, 2019 09.
Article in English | MEDLINE | ID: mdl-31187518

ABSTRACT

BACKGROUND: Response to inhaled corticosteroids is highly variable, and the association between DNA methylation and treatment response is not known. OBJECTIVE: To examine the association between peripheral blood DNA methylation and inhaled corticosteroid response in children with persistent asthma. METHODS: Epigenome-wide DNA methylation was analysed in individuals on inhaled corticosteroids in three independent and ethnically diverse cohorts-Childhood Asthma Management Program (CAMP); Children, Allergy, Milieu, Stockholm, Epidemiology (BAMSE); and Genetic Epidemiology of Asthma in Costa Rica Study (GACRS). Treatment response was evaluated using two definitions, the absence of emergency department visits and/or hospitalizations and the absence oral corticosteroid use while on inhaled corticosteroid therapy. CpG sites meeting nominal significance (P < 0.05) for each outcome were combined in a three-cohort meta-analysis with adjustment for multiple testing. DNA methylation was correlated with gene expression using Pearson and partial correlations. RESULTS: In 154 subjects from CAMP, 72 from BAMSE, and 168 from GACRS, relative hypomethylation of cg00066816 (171 bases upstream of IL12B) was associated with the absence of emergency department visits and/or hospitalizations (Q = 0.03) in all cohorts and lower IL12B expression (ρ = 0.34, P = 0.01) in BAMSE. Relative hypermethylation of cg04256470 (688 bases upstream of CORT) was associated with the absence of oral corticosteroid use (Q = 0.04) in all cohorts and higher CORT expression (ρ = 0.20, P = 0.045) in CAMP. CONCLUSION AND CLINICAL RELEVANCE: Differential DNA methylation of IL12B and CORT are associated with inhaled corticosteroid treatment response in persistent childhood asthmatics. Pharmaco-methylation can identify novel markers of treatment sensitivity in asthma.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Asthma , DNA Methylation/drug effects , Interleukin-12 Subunit p40 , Neuropeptides , Administration, Inhalation , Asthma/drug therapy , Asthma/genetics , Asthma/immunology , Asthma/metabolism , Child , CpG Islands/immunology , DNA Methylation/immunology , Epigenome/immunology , Female , Humans , Interleukin-12 Subunit p40/genetics , Interleukin-12 Subunit p40/immunology , Male , Neuropeptides/genetics , Neuropeptides/immunology
13.
BMC Cancer ; 19(1): 279, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30922248

ABSTRACT

BACKGROUND: With poor prognosis and limited treatment options for advanced hepatocellular carcinoma (HCC), development of novel therapeutic agents is urgently needed. This single-arm phase I study sought to assess the safety and preliminary efficacy of icaritin in human as a potential oral immunotherapy in addition to the immune-checkpoint inhibitors. METHODS: Eligible advanced HCC patients with Child-Pugh Class A or B were administered with a fixed oral dose of icaritin at either 600 or 800 mg b.i.d. The primary endpoint was safety, and the secondary endpoints included time-to-progression (TTP), overall survival (OS) and the clinical benefit rate (CBR). Icaritin treatment induced immune biomarkers and immune-modulating activities in myeloid cells were also explored. RESULTS: No drug-related adverse events ≥ Grade 3 were observed in all 20 enrolled HCC patients. Among the 15 evaluable patients, 7 (46.7%) achieved clinical benefit, representing one partial response (PR, 6.7%) and 6 stable disease (SD, 40%). The median TTP was 141 days (range: 20-343 days), and the median OS was 192 days (range: 33-1036 days). Durable survival was observed in PR/SD patients with a median OS of 488 days (range: 72-773). TTP was significantly associated with the dynamic changes of peripheral neutrophils (p = 0.0067) and lymphocytes (p = 0.0337). Icaritin treatment induced changes in immune biomarkers-and immune-suppressive myeloid cells were observed. CONCLUSIONS: Icaritin demonstrated safety profiles and preliminary durable survival benefits in advanced HCC patients, which were correlated with its immune-modulation activities and immune biomarkers. These results suggested the potential of icaritin as a novel oral immunotherapy for advanced HCC in addition to antibody-based PD-1/PD-L1 blockade therapies. TRIAL REGISTRATION: Clinicaltrial.gov identifier. NCT02496949 (retrospectively registered, July 14, 2015).


Subject(s)
Biomarkers, Tumor/immunology , Carcinoma, Hepatocellular/drug therapy , Flavonoids/administration & dosage , Liver Neoplasms/drug therapy , Administration, Oral , Adult , Aged , Carcinoma, Hepatocellular/immunology , Drug Administration Schedule , Female , Flavonoids/adverse effects , Flavonoids/pharmacology , Humans , Liver Neoplasms/immunology , Lymphocytes/drug effects , Male , Middle Aged , Neutrophils/drug effects , Survival Analysis , Treatment Outcome
14.
Hum Genomics ; 12(1): 1, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29335020

ABSTRACT

BACKGROUND: Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) significantly associated with chronic obstructive pulmonary disease (COPD). However, many genetic variants show suggestive evidence for association but do not meet the strict threshold for genome-wide significance. Integrative analysis of multiple omics datasets has the potential to identify novel genes involved in disease pathogenesis by leveraging these variants in a functional, regulatory context. RESULTS: We performed expression quantitative trait locus (eQTL) analysis using genome-wide SNP genotyping and gene expression profiling of lung tissue samples from 86 COPD cases and 31 controls, testing for SNPs associated with gene expression levels. These results were integrated with a prior COPD GWAS using an ensemble statistical and network methods approach to identify relevant genes and observe them in the context of overall genetic control of gene expression to highlight co-regulated genes and disease pathways. We identified 250,312 unique SNPs and 4997 genes in the cis(local)-eQTL analysis (5% false discovery rate). The top gene from the integrative analysis was MAPT, a gene recently identified in an independent GWAS of lung function. The genes HNRNPAB and PCBP2 with RNA binding activity and the gene ACVR1B were identified in network communities with validated disease relevance. CONCLUSIONS: The integration of lung tissue gene expression with genome-wide SNP genotyping and subsequent intersection with prior GWAS and omics studies highlighted candidate genes within COPD loci and in communities harboring known COPD genes. This integration also identified novel disease genes in sub-threshold regions that would otherwise have been missed through GWAS.


Subject(s)
Genetic Predisposition to Disease , Genome, Human/genetics , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/genetics , Activin Receptors, Type I/genetics , Adult , Aged , Female , Gene Expression Regulation , Genomics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , Lung/metabolism , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Quantitative Trait Loci/genetics , RNA-Binding Proteins/genetics , tau Proteins/genetics
15.
Proc Natl Acad Sci U S A ; 113(32): E4681-7, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27444019

ABSTRACT

Genetic variants in Hedgehog interacting protein (HHIP) have consistently been associated with the susceptibility to develop chronic obstructive pulmonary disease and pulmonary function levels, including the forced expiratory volume in 1 s (FEV1), in general population samples by genome-wide association studies. However, in vivo evidence connecting Hhip to age-related FEV1 decline and emphysema development is lacking. Herein, using Hhip heterozygous mice (Hhip(+/-)), we observed increased lung compliance and spontaneous emphysema in Hhip(+/-) mice starting at 10 mo of age. This increase was preceded by increases in oxidative stress levels in the lungs of Hhip(+/-) vs. Hhip(+/+) mice. To our knowledge, these results provide the first line of evidence that HHIP is involved in maintaining normal lung function and alveolar structures. Interestingly, antioxidant N-acetyl cysteine treatment in mice starting at age of 5 mo improved lung function and prevented emphysema development in Hhip(+/-) mice, suggesting that N-acetyl cysteine treatment limits the progression of age-related emphysema in Hhip(+/-) mice. Therefore, reduced lung function and age-related spontaneous emphysema development in Hhip(+/-) mice may be caused by increased oxidative stress levels in murine lungs as a result of haploinsufficiency of Hhip.


Subject(s)
Carrier Proteins/genetics , Emphysema/etiology , Haploinsufficiency , Membrane Glycoproteins/genetics , Acetylcysteine/pharmacology , Age Factors , Animals , Glutathione/metabolism , Glutathione S-Transferase pi/physiology , Lung/pathology , Lung/physiology , Lung Compliance , Mice , Mice, Inbred C57BL , Oxidative Stress
16.
J Allergy Clin Immunol ; 141(4): 1250-1258, 2018 04.
Article in English | MEDLINE | ID: mdl-28736268

ABSTRACT

BACKGROUND: Variations in drug response between individuals have prevented us from achieving high drug efficacy in treating many complex diseases, including asthma. Genetics plays an important role in accounting for such interindividual variations in drug response. However, systematic approaches for addressing how genetic factors and their regulators determine variations in drug response in asthma treatment are lacking. OBJECTIVE: We sought to identify key transcriptional regulators of corticosteroid response in asthma using a novel systems biology approach. METHODS: We used Passing Attributes between Networks for Data Assimilations (PANDA) to construct the gene regulatory networks associated with good responders and poor responders to inhaled corticosteroids based on a subset of 145 white children with asthma who participated in the Childhood Asthma Management Cohort. PANDA uses gene expression profiles and published relationships among genes, transcription factors (TFs), and proteins to construct the directed networks of TFs and genes. We assessed the differential connectivity between the gene regulatory network of good responders versus that of poor responders. RESULTS: When compared with poor responders, the network of good responders has differential connectivity and distinct ontologies (eg, proapoptosis enriched in network of good responders and antiapoptosis enriched in network of poor responders). Many of the key hubs identified in conjunction with clinical response are also cellular response hubs. Functional validation demonstrated abrogation of differences in corticosteroid-treated cell viability following siRNA knockdown of 2 TFs and differential downstream expression between good responders and poor responders. CONCLUSIONS: We have identified and validated multiple TFs influencing asthma treatment response. Our results show that differential connectivity analysis can provide new insights into the heterogeneity of drug treatment effects.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Asthma/genetics , Gene Regulatory Networks , Pharmacogenomic Variants , Administration, Inhalation , Child , Double-Blind Method , Female , Follow-Up Studies , Humans , Male , Systems Biology , Transcriptome , Treatment Outcome
17.
BMC Bioinformatics ; 19(1): 174, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29776330

ABSTRACT

BACKGROUND: Recently differential variability has been showed to be valuable in evaluating the association of DNA methylation to the risks of complex human diseases. The statistical tests based on both differential methylation level and differential variability can be more powerful than those based only on differential methylation level. Anh and Wang (2013) proposed a joint score test (AW) to simultaneously detect for differential methylation and differential variability. However, AW's method seems to be quite conservative and has not been fully compared with existing joint tests. RESULTS: We proposed three improved joint score tests, namely iAW.Lev, iAW.BF, and iAW.TM, and have made extensive comparisons with the joint likelihood ratio test (jointLRT), the Kolmogorov-Smirnov (KS) test, and the AW test. Systematic simulation studies showed that: 1) the three improved tests performed better (i.e., having larger power, while keeping nominal Type I error rates) than the other three tests for data with outliers and having different variances between cases and controls; 2) for data from normal distributions, the three improved tests had slightly lower power than jointLRT and AW. The analyses of two Illumina HumanMethylation27 data sets GSE37020 and GSE20080 and one Illumina Infinium MethylationEPIC data set GSE107080 demonstrated that three improved tests had higher true validation rates than those from jointLRT, KS, and AW. CONCLUSIONS: The three proposed joint score tests are robust against the violation of normality assumption and presence of outlying observations in comparison with other three existing tests. Among the three proposed tests, iAW.BF seems to be the most robust and effective one for all simulated scenarios and also in real data analyses.


Subject(s)
Algorithms , DNA Methylation/genetics , Data Analysis , Computer Simulation , Disease/genetics , Humans , Statistics, Nonparametric
18.
Pharmacogenomics J ; 18(5): 665-677, 2018 09.
Article in English | MEDLINE | ID: mdl-29298996

ABSTRACT

Variable responsiveness to zileuton, a leukotriene antagonist used to treat asthma, may be due in part to genetic variation. While individual SNPs were previously associated with zileuton-related lung function changes, specific quantitative trait loci (QTLs) and biological pathways that may contribute have not been identified. In this study, we investigated the hypothesis that genetic variation within biological pathways is associated with zileuton response. We performed an integrative QTL mapping and pathway enrichment study to investigate data from a GWAS of zileuton response, in addition to mRNA expression profiles and leukotriene production data from lymphoblastoid cell lines (LCLs) (derived from asthmatics) that were treated with zileuton or ethanol (control). We identified 1060 QTLs jointly associated with zileuton-related differential LTB4 production in LCLs and lung function change in patients taking zileuton, of which eight QTLs were also significantly associated with persistent LTB4 production in LCLs following zileuton treatment (i.e., 'poor' responders). Four nominally significant trans-eQTLs were predicted to regulate three candidate genes (SELL, MTF2, and GAL), the expression of which was significantly reduced in LCLs following zileuton treatment. Gene and pathway enrichment analyses of QTL associations identified multiple genes and pathways, predominantly related to phosphatidyl inositol signaling via PI3K. We validated the PI3K pathway activation status in a subset of LCLs demonstrating variable zileuton-related LTB4 production, and show that in contrast to LCLs that responded to zileuton, the PI3K pathway was activated in poor responder LCLs. Collectively, these findings demonstrate a role for the PIK3 pathway and its targets as important determinants of differential responsiveness to zileuton.


Subject(s)
Asthma/drug therapy , Asthma/genetics , Hydroxyurea/analogs & derivatives , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Cell Line , Humans , Hydroxyurea/therapeutic use , Leukotrienes/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/drug effects , Quantitative Trait Loci/genetics , RNA, Messenger/genetics
19.
Stat Med ; 37(17): 2586-2598, 2018 07 30.
Article in English | MEDLINE | ID: mdl-29855067

ABSTRACT

Retinitis pigmentosa is one of the most common forms of inherited retinal degeneration. The electroretinogram (ERG) can be used to determine the severity of retinitis pigmentosa-the lower the ERG amplitude, the more severe the disease is. In practice for career, lifestyle, and treatment counseling, it is of interest to predict the ERG amplitude of a patient at a future time. One approach is prediction based on the average rate of decline for individual patients. However, there is considerable variation both in initial amplitude and in rate of decline. In this article, we propose an empirical Bayes (EB) approach to incorporate the variations in initial amplitude and rate of decline for the prediction of ERG amplitude at the individual level. We applied the EB method to a collection of ERGs from 898 patients with 3 or more visits over 5 or more years of follow-up tested in the Berman-Gund Laboratory and observed that the predicted values at the last (kth) visit obtained by using the proposed method based on data for the first k-1 visits are highly correlated with the observed values at the kth visit (Spearman correlation =0.93) and have a higher correlation with the observed values than those obtained based on either the population average decline rate or those obtained based on the individual decline rate. The mean square errors for predicted values obtained by the EB method are also smaller than those predicted by the other methods.


Subject(s)
Bayes Theorem , Disease Progression , Electroretinography , Retinitis Pigmentosa/physiopathology , Computer Simulation , Humans
20.
Am J Respir Crit Care Med ; 195(2): 179-188, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27494826

ABSTRACT

RATIONALE: Maintaining optimal symptom control remains the primary objective of asthma treatment. Better understanding of the biologic underpinnings of asthma control may lead to the development of improved clinical and pharmaceutical approaches. OBJECTIVES: To identify molecular pathways and interrelated genes whose differential expression was associated with asthma control. METHODS: We performed gene set enrichment analyses of asthma control in 1,170 adults with asthma, each with gene expression data derived from either whole blood (WB) or unstimulated CD4+ T lymphocytes (CD4), and a self-reported asthma control score representing either the preceding 6 months (chronic) or 7 days (acute). Our study comprised a discovery WB cohort (n = 245, chronic) and three independent, nonoverlapping replication cohorts: a second WB set (n = 448, acute) and two CD4 sets (n = 300, chronic; n = 77, acute). MEASUREMENTS AND MAIN RESULTS: In the WB discovery cohort, we found significant overrepresentation of genes associated with asthma control in 1,106 gene sets from the Molecular Signatures Database (false discovery rate, <5%). Of these, 583 (53%) replicated in at least one replication cohort (false discovery rate, <25%). Suboptimal control was associated with signatures of eosinophilic and granulocytic inflammatory signals, whereas optimal control signatures were enriched for immature lymphocytic patterns. These signatures included two related biologic processes related to activation by TREM-1 (triggering receptor expressed on myeloid cells 1) and lipopolysaccharide. CONCLUSIONS: Together, these results demonstrate the existence of specific, reproducible transcriptomic components in blood that vary with degree of asthma control and implicate a novel biologic target (TREM-1).


Subject(s)
Asthma/blood , Gene Expression Profiling , Adult , Asthma/genetics , Asthma/metabolism , Asthma/therapy , CD4-Positive T-Lymphocytes/metabolism , Female , Gene Expression Regulation , Humans , Male , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL