Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Plant J ; 118(2): 324-344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38149487

ABSTRACT

Sclerotinia sclerotiorum causes white mold or stem rot in a wide range of economically important plants, bringing significant yield losses worldwide. Control of this pathogen is difficult as its resting structure sclerotia can survive in soil for years, and no Resistance genes have been identified in S. sclerotiorum hosts. Host-induced gene silencing (HIGS) has shown promising effects in controlling many fungal pathogens, including S. sclerotiorum. However, better molecular genetic understanding of signaling pathways involved in its development and pathogenicity is needed to provide effective HIGS gene targets. Here, by employing a forward genetic screen, we characterized an evolutionarily conserved mitogen-activated protein kinase (MAPK) cascade in S. sclerotiorum, consisting of SsSte50-SsSte11-SsSte7-Smk1, which controls mycelial growth, sclerotia development, compound appressoria formation, virulence, and hyphal fusion. Moreover, disruption of the putative downstream transcription factor SsSte12 led to normal sclerotia but deformed appressoria and attenuated host penetration, as well as impaired apothecia formation, suggestive of diverged regulation downstream of the MAPK cascade. Most importantly, targeting SsSte50 using host-expressed double-stranded RNA resulted in largely reduced virulence of S. sclerotiorum on both Nicotiana benthamiana leaves and transgenic Arabidopsis thaliana plants. Therefore, this MAPK signaling cascade is generally needed for its growth, development, and pathogenesis and can serve as ideal HIGS targets for mitigating economic damages caused by S. sclerotiorum infection.


Subject(s)
Ascomycota , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases , Mitogen-Activated Protein Kinases/genetics , Hyphae , Gene Silencing
2.
Nanomedicine (Lond) ; 19(2): 109-125, 2024 01.
Article in English | MEDLINE | ID: mdl-38197393

ABSTRACT

Purpose: We constructed biomimetic nanoparticles with biocompatible, tumor-targeting, laser-responsive properties for ferroptosis-induced colorectal cancer chemo-photothermal therapy, with the aim to realize double-hit ferroptosis treatment for colorectal cancer. Methods: The nanoparticles were prepared by first loading the chemotherapy drug bufotalin (CS-5) with Prussian blue (PB), then combining a hybridized erythrocyte-tumor membrane (M) with PB@CS-5 to produce PB@CS-5@M. The chemo-photothermal therapy efficiency of PB@CS-5@M was tested by in vitro and in vivo experiments. Results and conclusion: The combined PB and CS-5 act as promising ferroptosis inducers to enhance ferroptosis efficacy. The hyperthermia induced by laser stimulation can trigger PB to release CS-5 and iron and ferrous ions, which further promotes ferroptosis.


Subject(s)
Bufanolides , Colorectal Neoplasms , Ferrocyanides , Ferroptosis , Hyperthermia, Induced , Nanoparticles , Humans , Photothermal Therapy , Biomimetics , Phototherapy/methods , Hyperthermia, Induced/methods , Nanoparticles/therapeutic use , Colorectal Neoplasms/drug therapy , Doxorubicin/pharmacology , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL