Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Emerg Infect Dis ; 23(3): 405-414, 2017 03.
Article in English | MEDLINE | ID: mdl-27959260

ABSTRACT

Zika virus is causally linked with congenital microcephaly and may be associated with pregnancy loss. However, the mechanisms of Zika virus intrauterine transmission and replication and its tropism and persistence in tissues are poorly understood. We tested tissues from 52 case-patients: 8 infants with microcephaly who died and 44 women suspected of being infected with Zika virus during pregnancy. By reverse transcription PCR, tissues from 32 (62%) case-patients (brains from 8 infants with microcephaly and placental/fetal tissues from 24 women) were positive for Zika virus. In situ hybridization localized replicative Zika virus RNA in brains of 7 infants and in placentas of 9 women who had pregnancy losses during the first or second trimester. These findings demonstrate that Zika virus replicates and persists in fetal brains and placentas, providing direct evidence of its association with microcephaly. Tissue-based reverse transcription PCR extends the time frame of Zika virus detection in congenital and pregnancy-associated infections.


Subject(s)
Abortion, Spontaneous , Brain/virology , Placenta/virology , RNA, Viral/isolation & purification , Virus Replication/physiology , Zika Virus Infection/virology , Zika Virus/isolation & purification , Adolescent , Adult , Female , Fetus/virology , Humans , Infant , Infectious Disease Transmission, Vertical , Microcephaly , Pregnancy , Pregnancy Complications, Infectious/virology , Reverse Transcriptase Polymerase Chain Reaction , Young Adult
2.
MMWR Morb Mortal Wkly Rep ; 66(24): 636-643, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28640798

ABSTRACT

Zika virus infection during pregnancy can cause congenital microcephaly and brain abnormalities (1), and detection of Zika virus RNA in clinical and tissue specimens can provide definitive laboratory evidence of recent Zika virus infection. Whereas duration of viremia is typically short, prolonged detection of Zika virus RNA in placental, fetal, and neonatal brain tissue has been reported and can provide key diagnostic information by confirming recent Zika virus infection (2). In accordance with recent guidance (3,4), CDC provides Zika virus testing of placental and fetal tissues in clinical situations where this information could add diagnostic value. This report describes the evaluation of formalin-fixed paraffin-embedded (FFPE) tissue specimens tested for Zika virus infection in 2016 and the contribution of this testing to the public health response. Among 546 live births with possible maternal Zika virus exposure, for which placental tissues were submitted by the 50 states and District of Columbia (DC), 60 (11%) were positive by Zika virus reverse transcription-polymerase chain reaction (RT-PCR). Among 81 pregnancy losses for which placental and/or fetal tissues were submitted, 18 (22%) were positive by Zika virus RT-PCR. Zika virus RT-PCR was positive on placental tissues from 38/363 (10%) live births with maternal serologic evidence of recent unspecified flavivirus infection and from 9/86 (10%) with negative maternal Zika virus immunoglobulin M (IgM) where possible maternal exposure occurred >12 weeks before serum collection. These results demonstrate that Zika virus RT-PCR testing of tissue specimens can provide a confirmed diagnosis of recent maternal Zika virus infection.


Subject(s)
Fetus/virology , Placenta/virology , Pregnancy Complications, Infectious/diagnosis , Zika Virus Infection/diagnosis , Zika Virus/isolation & purification , District of Columbia , Female , Humans , Pregnancy , Real-Time Polymerase Chain Reaction , United States
4.
J Vet Diagn Invest ; 35(4): 438-442, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37204061

ABSTRACT

Canine leproid granuloma (CLG) is a chronic form of dermatitis that has been associated with nontuberculous mycobacterial infections in Africa, Oceania, the Americas, and Europe. We report here a case of CLG associated with a member of the Mycobacterium tuberculosis complex (MTBC), which could be of public health concern. An 8-y-old pet dog developed 0.5-1-cm diameter, raised, firm, nonpruritic, alopecic, painless skin nodules on the external aspects of both pinnae. Histologic examination revealed severe pyogranulomatous dermatitis with intracellular Ziehl-Neelsen-positive bacilli that were immunoreactive by immunohistochemistry using a polyclonal primary antibody that recognizes tuberculous and nontuberculous Mycobacterium species. DNA extracted from formalin-fixed, paraffin-embedded skin sections was tested by a Mycobacterium genus-specific nested PCR assay targeting the 16S rRNA gene. BLAST sequence analysis of 214-bp and 178-bp amplicons showed 99.5% identity with members of the MTBC; however, the agent could not be identified at the species level. Although CLG has been associated traditionally with nontuberculous mycobacterial infections, the role of Mycobacterium spp. within the MTBC as a cause of this condition, and the role of dogs with CLG as possible sources of MTBC to other animals and humans, should not be disregarded given its zoonotic potential.


Subject(s)
Dermatitis , Mycobacterium Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Dogs , Animals , Mycobacterium Infections/microbiology , Mycobacterium Infections/veterinary , Mycobacterium tuberculosis/genetics , RNA, Ribosomal, 16S/genetics , Tuberculosis/veterinary , Tuberculosis/diagnosis , Granuloma/veterinary , Granuloma/microbiology , Dermatitis/veterinary
5.
Open Forum Infect Dis ; 6(2): ofz017, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30800698

ABSTRACT

BACKGROUND: Human adenoviruses (HAdVs) are known causes of respiratory illness outbreaks in congregate settings, but cases and clusters are less well described from community settings in the United States. During December 2016-February 2017, the New Jersey Department of Health received reports of HAdV infections from 3 sources in 3 adjacent counties. We investigated to characterize the epidemiologic, laboratory, and clinical features of this HAdV outbreak. METHODS: A case was defined as a New Jersey resident with acute respiratory illness during December 1, 2016-March 31, 2017 with laboratory identification of HAdV genome type 7d (HAdV-7d). Human adenovirus was detected by real-time and conventional polymerase chain reaction and molecular typed by partial hexon capsid protein gene sequencing. The HAdV genome type was identified by whole genome sequencing analysis. Available medical, public health, and surveillance records were reviewed. RESULTS: We identified 12 cases, including 3 treatment facility patients, 7 college students, and 2 cases at a tertiary-care hospital. Four cases died; all had underlying comorbidities. Nine HAdV-7d whole genome sequences obtained from all 3 sites were nearly identical. CONCLUSIONS: Transmission of HAdV-7d occurred in community and congregate settings across 3 counties and resulted in severe morbidity and mortality in some cases with underlying comorbidities. Clinicians and local and state health departments should consider HAdV in patients with severe respiratory infection.

SELECTION OF CITATIONS
SEARCH DETAIL