ABSTRACT
Morocco has an important groundwater reserve, especially in the Atlas domain, corresponding to its largest water reservoir. This reserve comes from rainwater infiltrated into rocks and sediments to give rise to mineralized waters feeding many springs and having curative properties, which confer each spa-specific therapeutic indications, based on the medicinal properties of its waters. All over the world, mineral waters of thermal springs have interesting therapeutic uses to cure some diseases; unfortunately, such potential is underexploited in Morocco. This narrative review deals with the distribution of thermal springs in Morocco, the classification of their thermal waters, and their health effects, with the aim to enhance them. For this purpose, previous studies' results on different aspects of thermal waters were searched in the most famous scientific databases, by using targeted specific keywords. Literature has shown that Morocco contains several thermal springs, scattered throughout the Middle Atlas, in the South, and in the Rif, which are regarded as waters of high therapeutic quality, whose thermal cures are often recommended to people suffering from rheumatism and locomotor system's diseases, skin diseases such as eczema and psoriasis, cardiovascular diseases, overweight, or respiratory troubles. However, apart from the unique and real thermal station of Moulay Yacoub, the other thermal springs are exploited in an empirical and artisanal way, mainly by a local population. So, as hydrotherapy constitutes a good choice of natural therapy using water components as a complement or alternative to conventional treatments, a better understanding of the thermal springs' distribution in Morocco, their thermal waters' classification, and their potential health effects may enable their valorization through a better use of their waters.
ABSTRACT
To increase the sensibility of Salmonella typhimurium strain, a mixture of Thymus vulgaris L. (T. vulgaris L.), Rosmarinus officinalis L. (R. officinalis L.) and Myrtus communis L. (M. communis L.) essential oils (EOs) was used in combined treatment by experimental design methodology (mixture design). The chemical composition of EOs was firstly identified by GC and GC/MS and their antibacterial activity was evaluated. The results of this first step have shown that thymol and borneol were the major compounds in T. vulgaris and M. communis L. EOs, respectively, while 1,8-cineole and α-pinene were found as major compounds in R. officinalis L. The same results have shown a strong antibacterial activity of T. vulgaris L. EO followed by an important power of M. communis L. EO against a moderate activity of R. officinalis L. EO. Besides, 1/20 (v/v) was the concentration giving a strain response classified as sensitive. From this concentration, the mixture design was performed and analyzed. The optimization of mixtures antibacterial activities has highlighted the synergistic effect between T. vulgaris L. and M. communis L. essential oils. A formulation comprising 55% of T. vulgaris L. and 45% of M. communis L. essential oils, respectively, can be considered for the increase of Salmonella typhimurium sensibility.
Subject(s)
Anti-Bacterial Agents/administration & dosage , Myrtus , Oils, Volatile/administration & dosage , Rosmarinus , Salmonella typhimurium/drug effects , Thymus Plant , Anti-Bacterial Agents/isolation & purification , Chemistry, Pharmaceutical/methods , Drug Therapy, Combination , Microbial Sensitivity Tests/methods , Oils, Volatile/isolation & purification , Plant Components, Aerial , Salmonella typhimurium/physiologyABSTRACT
BACKGROUND: To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. RESULTS: The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. CONCLUSIONS: Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.