Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Nature ; 617(7959): 176-184, 2023 05.
Article in English | MEDLINE | ID: mdl-37100904

ABSTRACT

Physical interactions between proteins are essential for most biological processes governing life1. However, the molecular determinants of such interactions have been challenging to understand, even as genomic, proteomic and structural data increase. This knowledge gap has been a major obstacle for the comprehensive understanding of cellular protein-protein interaction networks and for the de novo design of protein binders that are crucial for synthetic biology and translational applications2-9. Here we use a geometric deep-learning framework operating on protein surfaces that generates fingerprints to describe geometric and chemical features that are critical to drive protein-protein interactions10. We hypothesized that these fingerprints capture the key aspects of molecular recognition that represent a new paradigm in the computational design of novel protein interactions. As a proof of principle, we computationally designed several de novo protein binders to engage four protein targets: SARS-CoV-2 spike, PD-1, PD-L1 and CTLA-4. Several designs were experimentally optimized, whereas others were generated purely in silico, reaching nanomolar affinity with structural and mutational characterization showing highly accurate predictions. Overall, our surface-centric approach captures the physical and chemical determinants of molecular recognition, enabling an approach for the de novo design of protein interactions and, more broadly, of artificial proteins with function.


Subject(s)
Computer Simulation , Deep Learning , Protein Binding , Proteins , Humans , Proteins/chemistry , Proteins/metabolism , Proteomics , Protein Interaction Maps , Binding Sites , Synthetic Biology
2.
Genome Res ; 24(8): 1260-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24879559

ABSTRACT

Reverse transcription-derived sequences account for at least half of the human genome. Although these retroelements are formidable motors of evolution, they can occasionally cause disease, and accordingly are inactivated during early embryogenesis through epigenetic mechanisms. In the mouse, at least for endogenous retroviruses, important mediators of this process are the tetrapod-specific KRAB-containing zinc finger proteins (KRAB-ZFPs) and their cofactor TRIM28. The present study demonstrates that KRAB/TRIM28-mediated regulation is responsible for controlling a very broad range of human-specific endogenous retroelements (EREs) in human embryonic stem (ES) cells and that it exerts, as a consequence, a marked effect on the transcriptional dynamics of these cells. It further reveals reciprocal dependence between TRIM28 recruitment at specific families of EREs and DNA methylation. It finally points to the importance of persistent TRIM28-mediated control of ERE transcriptional impact beyond their presumed inactivation by DNA methylation.


Subject(s)
DNA Methylation , Repressor Proteins/physiology , Alu Elements , Animals , Cell Line , Embryonic Stem Cells , Endogenous Retroviruses/genetics , Gene Expression Regulation , Humans , Mice , Transcription, Genetic , Tripartite Motif-Containing Protein 28
3.
Lancet Reg Health Eur ; 24: 100547, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36474728

ABSTRACT

Background: More than two years into the COVID-19 pandemic, most of the population has developed anti-SARS-CoV-2 antibodies from infection and/or vaccination. However, public health decision-making is hindered by the lack of up-to-date and precise characterization of the immune landscape in the population. Here, we estimated anti-SARS-CoV-2 antibodies seroprevalence and cross-variant neutralization capacity after Omicron became dominant in Geneva, Switzerland. Methods: We conducted a population-based serosurvey between April 29 and June 9, 2022, recruiting children and adults of all ages from age-stratified random samples of the general population of Geneva, Switzerland. We tested for anti-SARS-CoV-2 antibodies using commercial immunoassays targeting either the spike (S) or nucleocapsid (N) protein, and for antibody neutralization capacity against different SARS-CoV-2 variants using a cell-free Spike trimer-ACE2 binding-based surrogate neutralization assay. We estimated seroprevalence and neutralization capacity using a Bayesian modeling framework accounting for the demographics, vaccination, and infection statuses of the Geneva population. Findings: Among the 2521 individuals included in the analysis, the estimated total antibodies seroprevalence was 93.8% (95% CrI 93.1-94.5), including 72.4% (70.0-74.7) for infection-induced antibodies. Estimates of neutralizing antibodies in a representative subsample (N = 1160) ranged from 79.5% (77.1-81.8) against the Alpha variant to 46.7% (43.0-50.4) against the Omicron BA.4/BA.5 subvariants. Despite having high seroprevalence of infection-induced antibodies (76.7% [69.7-83.0] for ages 0-5 years, 90.5% [86.5-94.1] for ages 6-11 years), children aged <12 years had substantially lower neutralizing activity than older participants, particularly against Omicron subvariants. Overall, vaccination was associated with higher neutralizing activity against pre-Omicron variants. Vaccine booster alongside recent infection was associated with higher neutralizing activity against Omicron subvariants. Interpretation: While most of the Geneva population has developed anti-SARS-CoV-2 antibodies through vaccination and/or infection, less than half has neutralizing activity against the currently circulating Omicron BA.5 subvariant. Hybrid immunity obtained through booster vaccination and infection confers the greatest neutralization capacity, including against Omicron. Funding: General Directorate of Health in Geneva canton, Private Foundation of the Geneva University Hospitals, European Commission ("CoVICIS" grant), and a private foundation advised by CARIGEST SA.

4.
J Infect ; 87(6): 524-537, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852477

ABSTRACT

OBJECTIVES: Due to the rapid evolution of SARS-CoV-2 to variants with reduced sensitivity to vaccine-induced humoral immunity and the near complete loss of protective efficacy of licensed therapeutic monoclonal antibodies, we isolated a potent, broad-spectrum neutralizing antibody that could potentially provide prophylactic protection to immunocompromised patient populations. METHODS: Spike-specific B-cell clones isolated from a vaccinated post-infected donor were profiled for those producing potent neutralizing antibodies against a panel of SARS-CoV-2 variants. The P4J15 antibody was further characterized to define the structural binding epitope, viral resistance, and in vivo efficacy. RESULTS: The P4J15 mAb shows <20 ng/ml neutralizing activity against all variants including the latest XBB.2.3 and EG.5.1 sub-lineages. Structural studies of P4J15 in complex with Omicron XBB.1 Spike show that the P4J15 epitope shares ∼93% of its buried surface area with the ACE2 contact region, consistent with an ACE2 mimetic antibody. In vitro selection of SARS-CoV-2 mutants escaping P4J15 neutralization showed reduced infectivity, poor ACE2 binding, and mutations are rare in public sequence databases. Using a SARS-CoV-2 XBB.1.5 monkey challenge model, P4J15-LS confers complete prophylactic protection with an exceptionally long in vivo half-life of 43 days. CONCLUSIONS: The P4J15 mAb has potential as a broad-spectrum anti-SARS-CoV-2 drug for prophylactic protection of at-risk patient populations.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Animals , Haplorhini
5.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Article in English | MEDLINE | ID: mdl-35879526

ABSTRACT

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Viral , Cryoelectron Microscopy , Epitopes , Haplorhini , Humans , Membrane Glycoproteins , Neutralization Tests , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
6.
Sci Transl Med ; 13(605)2021 08 04.
Article in English | MEDLINE | ID: mdl-34257144

ABSTRACT

The detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibodies in the serum of an individual indicates previous infection or vaccination. However, it provides limited insight into the protective nature of this immune response. Neutralizing antibodies recognizing the viral spike protein are more revealing, yet their measurement traditionally requires virus- and cell-based systems that are costly, time-consuming, inflexible, and potentially biohazardous. Here, we present a cell-free quantitative neutralization assay based on the competitive inhibition of trimeric SARS-CoV-2 spike protein binding to the angiotensin-converting enzyme 2 (ACE2) receptor. This high-throughput method matches the performance of the gold standard live virus infection assay, as verified with a panel of 206 seropositive donors with varying degrees of infection severity and virus-specific immunoglobulin G titers, achieving 96.7% sensitivity and 100% specificity. Furthermore, it allows for the parallel assessment of neutralizing activities against multiple SARS-CoV-2 spike protein variants of concern. We used our assay to profile serum samples from 59 patients hospitalized with coronavirus disease 2019 (COVID-19). We found that although most sera had high activity against the 2019-nCoV parental spike protein and, to a lesser extent, the α (B.1.1.7) variant, only 58% of serum samples could efficiently neutralize a spike protein derivative containing mutations present in the ß (B.1.351) variant. Thus, we have developed an assay that can evaluate effective neutralizing antibody responses to SARS-CoV-2 spike protein variants of concern after natural infection and that can be applied to characterize vaccine-induced antibody responses or to assess the potency of monoclonal antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Humans , Immunization, Passive , Neutralization Tests , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
7.
Dev Cell ; 56(20): 2790-2807.e8, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34599882

ABSTRACT

SARS-CoV-2 virions are surrounded by a lipid bilayer that contains membrane proteins such as spike, responsible for target-cell binding and virus fusion. We found that during SARS-CoV-2 infection, spike becomes lipid modified, through the sequential action of the S-acyltransferases ZDHHC20 and 9. Particularly striking is the rapid acylation of spike on 10 cytosolic cysteines within the ER and Golgi. Using a combination of computational, lipidomics, and biochemical approaches, we show that this massive lipidation controls spike biogenesis and degradation, and drives the formation of localized ordered cholesterol and sphingolipid-rich lipid nanodomains in the early Golgi, where viral budding occurs. Finally, S-acylation of spike allows the formation of viruses with enhanced fusion capacity. Our study points toward S-acylating enzymes and lipid biosynthesis enzymes as novel therapeutic anti-viral targets.


Subject(s)
Acylation/physiology , COVID-19 Drug Treatment , Membrane Lipids/metabolism , SARS-CoV-2/pathogenicity , Acyltransferases/metabolism , Golgi Apparatus/metabolism , Golgi Apparatus/virology , Humans , Virus Assembly/physiology
8.
Cell Rep ; 37(2): 109814, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34599871

ABSTRACT

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Subject(s)
Broadly Neutralizing Antibodies/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , Cell Line , Cricetinae , Disease Models, Animal , Epitopes/immunology , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Neutralization Tests , Protein Binding/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Structure-Activity Relationship , Vaccination
9.
Sci Adv ; 6(35): eaba3200, 2020 08.
Article in English | MEDLINE | ID: mdl-32923624

ABSTRACT

In the first days of embryogenesis, transposable element-embedded regulatory sequences (TEeRS) are silenced by Kruppel-associated box (KRAB) zinc finger proteins (KZFPs). Many TEeRS are subsequently co-opted in transcription networks, but how KZFPs influence this process is largely unknown. We identify ZNF417 and ZNF587 as primate-specific KZFPs repressing HERVK (human endogenous retrovirus K) and SVA (SINE-VNTR-Alu) integrants in human embryonic stem cells (ESCs). Expressed in specific regions of the human developing and adult brain, ZNF417/587 keep controlling TEeRS in ESC-derived neurons and brain organoids, secondarily influencing the differentiation and neurotransmission profile of neurons and preventing the induction of neurotoxic retroviral proteins and an interferon-like response. Thus, evolutionarily recent KZFPs and their TE targets partner up to influence human neuronal differentiation and physiology.


Subject(s)
Retroelements , Zinc Fingers , Animals , Gene Expression , Humans , Neurons , Primates/genetics , Retroelements/genetics , Zinc Fingers/genetics
10.
J Mol Biol ; 431(14): 2511-2527, 2019 06 28.
Article in English | MEDLINE | ID: mdl-31078555

ABSTRACT

TRIM28 (also known as KAP1 or TIF1ß) is the universal co-repressor of the Krüppel-associated box-containing zinc finger proteins (Krab-ZFPs), the largest family of transcription factors in mammals. During early embryogenesis, TRIM28 mediates the transcriptional silencing of many endogenous retroviral elements and genomic imprinted sites. Silencing is initiated by the recruitment of TRIM28 to a target locus by members of the Krab-ZFP. Subsequently, TRIM28 functions as a scaffold protein to recruit chromatin modifying effectors featuring SETDB1, HP1 and the NuRD complex. Although many protein partners involved in silencing have been identified, the molecular basis of the protein interactions that mediate silencing remains largely unclear. In the present study, we identified the first Bbox domain (T28_B1 135-203) as a molecular interface responsible for the formation of higher-order oligomers of TRIM28. The structure of this domain reveals a new interface on the surface of the Bbox domain. Mutants disrupting the interface disrupt the formation of oligomers but have no observed effect on transcriptional silencing defining a single TRIM28 dimer as the functional unit for silencing. Using assembly-deficient mutants, we employed small-angle X-ray scattering and biophysical techniques to characterize binding to member of the Krab-ZFP family. This allows us to narrow and define the binding interface to the center of the coiled-coil region (residues 294-321) of TRIM28 and define mutants that abolish binding to the Krab-ZFP proteins.


Subject(s)
Embryonic Stem Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Mutation , Repressor Proteins/metabolism , Tripartite Motif-Containing Protein 28/metabolism , Animals , Cells, Cultured , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Embryonic Stem Cells/cytology , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Kruppel-Like Transcription Factors/chemistry , Kruppel-Like Transcription Factors/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Protein Interaction Maps , Protein Multimerization , Repressor Proteins/chemistry , Repressor Proteins/genetics , Tripartite Motif-Containing Protein 28/chemistry , Tripartite Motif-Containing Protein 28/genetics
11.
Cell Rep ; 2(4): 766-73, 2012 Oct 25.
Article in English | MEDLINE | ID: mdl-23041315

ABSTRACT

De novo DNA methylation is an essential aspect of the epigenetic reprogramming that takes place during early development, yet factors responsible for its instatement at particular genomic loci are poorly defined. Here, we demonstrate that the KRAB-ZFP-mediated recruitment of KAP1 to DNA in embryonic stem cells (ESCs) induces cytosine methylation. This process is preceded by H3K9 trimethylation, and genome-wide analyses reveal that it spreads over short distances from KAP1-binding sites so as to involve nearby CpG islands. In sharp contrast, in differentiated cells, KRAB/KAP1-induced heterochromatin formation does not lead to DNA methylation. Correspondingly, the methylation status of CpG islands in the adult mouse liver correlates with their proximity to KAP1-binding sites in ESCs, not in hepatocytes. Therefore, KRAB-ZFPs and their cofactor KAP1 are in part responsible for the establishment during early embryogenesis of site-specific DNA methylation patterns that are maintained through development.


Subject(s)
Carrier Proteins/metabolism , DNA Methylation , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Binding Sites , CCAAT-Enhancer-Binding Proteins , Cell Line , Chromatin/metabolism , CpG Islands , Embryonic Development , Embryonic Stem Cells/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Mice , Tripartite Motif-Containing Protein 28 , Ubiquitin-Protein Ligases
SELECTION OF CITATIONS
SEARCH DETAIL