Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Neuroimage ; 277: 120231, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37330025

ABSTRACT

Estimating structural connectivity from diffusion-weighted magnetic resonance imaging is a challenging task, partly due to the presence of false-positive connections and the misestimation of connection weights. Building on previous efforts, the MICCAI-CDMRI Diffusion-Simulated Connectivity (DiSCo) challenge was carried out to evaluate state-of-the-art connectivity methods using novel large-scale numerical phantoms. The diffusion signal for the phantoms was obtained from Monte Carlo simulations. The results of the challenge suggest that methods selected by the 14 teams participating in the challenge can provide high correlations between estimated and ground-truth connectivity weights, in complex numerical environments. Additionally, the methods used by the participating teams were able to accurately identify the binary connectivity of the numerical dataset. However, specific false positive and false negative connections were consistently estimated across all methods. Although the challenge dataset doesn't capture the complexity of a real brain, it provided unique data with known macrostructure and microstructure ground-truth properties to facilitate the development of connectivity estimation methods.


Subject(s)
Diffusion Magnetic Resonance Imaging , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Monte Carlo Method , Phantoms, Imaging
2.
Magn Reson Med ; 90(4): 1625-1640, 2023 10.
Article in English | MEDLINE | ID: mdl-37279007

ABSTRACT

PURPOSE: Biophysical models of diffusion MRI have been developed to characterize microstructure in various tissues, but existing models are not suitable for tissue composed of permeable spherical cells. In this study we introduce Cellular Exchange Imaging (CEXI), a model tailored for permeable spherical cells, and compares its performance to a related Ball & Sphere (BS) model that neglects permeability. METHODS: We generated DW-MRI signals using Monte-Carlo simulations with a PGSE sequence in numerical substrates made of spherical cells and their extracellular space for a range of membrane permeability. From these signals, the properties of the substrates were inferred using both BS and CEXI models. RESULTS: CEXI outperformed the impermeable model by providing more stable estimates cell size and intracellular volume fraction that were diffusion time-independent. Notably, CEXI accurately estimated the exchange time for low to moderate permeability levels previously reported in other studies ( κ < 25 µ m / s $$ \kappa <25\kern0.3em \mu \mathrm{m}/\mathrm{s} $$ ). However, in highly permeable substrates ( κ = 50 µ m / s $$ \kappa =50\kern0.3em \mu \mathrm{m}/\mathrm{s} $$ ), the estimated parameters were less stable, particularly the diffusion coefficients. CONCLUSION: This study highlights the importance of modeling the exchange time to accurately quantify microstructure properties in permeable cellular substrates. Future studies should evaluate CEXI in clinical applications such as lymph nodes, investigate exchange time as a potential biomarker of tumor severity, and develop more appropriate tissue models that account for anisotropic diffusion and highly permeable membranes.


Subject(s)
Diffusion Magnetic Resonance Imaging , Water , Water/chemistry , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging , Body Water/metabolism , Extracellular Space , Diffusion
3.
Proc Natl Acad Sci U S A ; 117(52): 33649-33659, 2020 12 29.
Article in English | MEDLINE | ID: mdl-33376224

ABSTRACT

Axonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory. Within single axons, we find that the variation in diameter and conduction velocity correlates with the mean diameter, contesting the value of precise diameter determination in larger axons. These complex 3D axon morphologies drive previously reported 2D trends in axon diameter and g-ratio. Furthermore, we find that these morphologies bias the estimates of axon diameter with diffusion magnetic resonance imaging and, ultimately, impact the investigation and formulation of the axon structure-function relationship.


Subject(s)
Axons/physiology , Animals , Female , Haplorhini , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Myelin Sheath/metabolism , Structure-Activity Relationship , Vacuoles/metabolism , White Matter/anatomy & histology
4.
Neuroimage ; 257: 119327, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35636227

ABSTRACT

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.


Subject(s)
Connectome , White Matter , Brain/diagnostic imaging , Connectome/methods , Diffusion , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Image Processing, Computer-Assisted/methods
5.
Neuroimage ; 227: 117617, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33301934

ABSTRACT

At the typical spatial resolution of MRI in the human brain, approximately 60-90% of voxels contain multiple fiber populations. Quantifying microstructural properties of distinct fiber populations within a voxel is therefore challenging but necessary. While progress has been made for diffusion and T1-relaxation properties, how to resolve intra-voxel T2 heterogeneity remains an open question. Here a novel framework, named COMMIT-T2, is proposed that uses tractography-based spatial regularization with diffusion-relaxometry data to estimate multiple intra-axonal T2 values within a voxel. Unlike previously-proposed voxel-based T2 estimation methods, which (when applied in white matter) implicitly assume just one fiber bundle in the voxel or the same T2 for all bundles in the voxel, COMMIT-T2 can recover specific T2 values for each unique fiber population passing through the voxel. In this approach, the number of recovered unique T2 values is not determined by a number of model parameters set a priori, but rather by the number of tractography-reconstructed streamlines passing through the voxel. Proof-of-concept is provided in silico and in vivo, including a demonstration that distinct tract-specific T2 profiles can be recovered even in the three-way crossing of the corpus callosum, arcuate fasciculus, and corticospinal tract. We demonstrate the favourable performance of COMMIT-T2 compared to that of voxelwise approaches for mapping intra-axonal T2 exploiting diffusion, including a direction-averaged method and AMICO-T2, a new extension to the previously-proposed Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework.


Subject(s)
Axons , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , Algorithms , Brain Mapping/methods , Computer Simulation , Humans , Image Processing, Computer-Assisted/methods
6.
Neuroimage ; 243: 118502, 2021 11.
Article in English | MEDLINE | ID: mdl-34433094

ABSTRACT

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.


Subject(s)
Diffusion Tensor Imaging/methods , Dissection/methods , White Matter/diagnostic imaging , Algorithms , Humans , Image Processing, Computer-Assisted/methods , Neural Pathways/diagnostic imaging
7.
Magn Reson Med ; 83(6): 2322-2330, 2020 06.
Article in English | MEDLINE | ID: mdl-31691378

ABSTRACT

PURPOSE: Non-invasive axon diameter distribution (ADD) mapping using diffusion MRI is an ill-posed problem. Current ADD mapping methods require knowledge of axon orientation before performing the acquisition. Instead, ActiveAx uses a 3D sampling scheme to estimate the orientation from the signal, providing orientationally invariant estimates. The mean diameter is estimated instead of the distribution for the solution to be tractable. Here, we propose an extension (ActiveAxADD ) that provides non-parametric and orientationally invariant estimates of the whole distribution. THEORY: The accelerated microstructure imaging with convex optimization (AMICO) framework accelerates mean diameter estimation using a linear formulation combined with Tikhonov regularization to stabilize the solution. Here, we implement a new formulation (ActiveAxADD ) that uses Laplacian regularization to provide robust estimates of the whole ADD. METHODS: The performance of ActiveAxADD was evaluated using Monte Carlo simulations on synthetic white matter samples mimicking axon distributions reported in histological studies. RESULTS: ActiveAxADD provided robust ADD reconstructions when considering the isolated intra-axonal signal. However, our formulation inherited some common microstructure imaging limitations. When accounting for the extra axonal compartment, estimated ADDs showed spurious peaks and increased variability because of the difficulty of disentangling intra and extra axonal contributions. CONCLUSION: Laplacian regularization solves the ill-posedness regarding the intra axonal compartment. ActiveAxADD can potentially provide non-parametric and orientationally invariant ADDs from isolated intra-axonal signals. However, further work is required before ActiveAxADD can be applied to real data containing extra-axonal contributions, as disentangling the 2 compartment appears to be an overlooked challenge that affects microstructure imaging methods in general.


Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Axons , Monte Carlo Method
8.
J Magn Reson Imaging ; 51(1): 234-249, 2020 01.
Article in English | MEDLINE | ID: mdl-31179595

ABSTRACT

BACKGROUND: Fiber tracking with diffusion-weighted MRI has become an essential tool for estimating in vivo brain white matter architecture. Fiber tracking results are sensitive to the choice of processing method and tracking criteria. PURPOSE: To assess the variability for an algorithm in group studies reproducibility is of critical context. However, reproducibility does not assess the validity of the brain connections. Phantom studies provide concrete quantitative comparisons of methods relative to absolute ground truths, yet do no capture variabilities because of in vivo physiological factors. The ISMRM 2017 TraCED challenge was created to fulfill the gap. STUDY TYPE: A systematic review of algorithms and tract reproducibility studies. SUBJECTS: Single healthy volunteers. FIELD STRENGTH/SEQUENCE: 3.0T, two different scanners by the same manufacturer. The multishell acquisition included b-values of 1000, 2000, and 3000 s/mm2 with 20, 45, and 64 diffusion gradient directions per shell, respectively. ASSESSMENT: Nine international groups submitted 46 tractography algorithm entries each consisting 16 tracts per scan. The algorithms were assessed using intraclass correlation (ICC) and the Dice similarity measure. STATISTICAL TESTS: Containment analysis was performed to assess if the submitted algorithms had containment within tracts of larger volume submissions. This also serves the purpose to detect if spurious submissions had been made. RESULTS: The top five submissions had high ICC and Dice >0.88. Reproducibility was high within the top five submissions when assessed across sessions or across scanners: 0.87-0.97. Containment analysis shows that the top five submissions are contained within larger volume submissions. From the total of 16 tracts as an outcome relatively the number of tracts with high, moderate, and low reproducibility were 8, 4, and 4. DATA CONCLUSION: The different methods clearly result in fundamentally different tract structures at the more conservative specificity choices. Data and challenge infrastructure remain available for continued analysis and provide a platform for comparison. LEVEL OF EVIDENCE: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:234-249.


Subject(s)
Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging , Humans , Reference Values , Reproducibility of Results
9.
Neuroimage ; 185: 1-11, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30317017

ABSTRACT

Diffusion MRI fiber tractography is widely used to probe the structural connectivity of the brain, with a range of applications in both clinical and basic neuroscience. Despite widespread use, tractography has well-known pitfalls that limits the anatomical accuracy of this technique. Numerous modern methods have been developed to address these shortcomings through advances in acquisition, modeling, and computation. To test whether these advances improve tractography accuracy, we organized the 3-D Validation of Tractography with Experimental MRI (3D-VoTEM) challenge at the ISBI 2018 conference. We made available three unique independent tractography validation datasets - a physical phantom and two ex vivo brain specimens - resulting in 176 distinct submissions from 9 research groups. By comparing results over a wide range of fiber complexities and algorithmic strategies, this challenge provides a more comprehensive assessment of tractography's inherent limitations than has been reported previously. The central results were consistent across all sub-challenges in that, despite advances in tractography methods, the anatomical accuracy of tractography has not dramatically improved in recent years. Taken together, our results independently confirm findings from decades of tractography validation studies, demonstrate inherent limitations in reconstructing white matter pathways using diffusion MRI data alone, and highlight the need for alternative or combinatorial strategies to accurately map the fiber pathways of the brain.


Subject(s)
Brain Mapping/methods , Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Image Processing, Computer-Assisted/methods , Neural Pathways/anatomy & histology , Humans
10.
bioRxiv ; 2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37333205

ABSTRACT

Aquaporins provide a new class of genetic tools for imaging molecular activity in deep tissues by increasing the rate of cellular water diffusion, which generates magnetic resonance contrast. However, distinguishing aquaporin contrast from the tissue background is challenging because water diffusion is also influenced by structural factors such as cell size and packing density. Here, we developed and experimentally validated a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on time-dependent changes in diffusivity can improve specificity by unambiguously isolating aquaporin-driven contrast from the tissue background. Finally, we used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin, and established a simple mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. This study creates a framework for broad applications of aquaporins, particularly in biomedicine and in vivo synthetic biology, where quantitative methods to measure the location and performance of genetic devices in whole vertebrates are necessary.

11.
ACS Synth Biol ; 12(10): 3041-3049, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37793076

ABSTRACT

Aquaporins provide a unique approach for imaging genetic activity in deep tissues by increasing the rate of cellular water diffusion, which generates a magnetic resonance contrast. However, distinguishing aquaporin signals from the tissue background is challenging because water diffusion is influenced by structural factors, such as cell size and packing density. Here, we developed a Monte Carlo model to analyze how cell radius and intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a differential imaging approach based on subtracting signals at two diffusion times can improve specificity by unambiguously isolating aquaporin signals from the tissue background. We further used Monte Carlo simulations to analyze the connection between diffusivity and the percentage of cells engineered to express aquaporin and established a mapping that accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. The quantitative framework developed in this study will enable a broad range of applications in biomedical synthetic biology, requiring the use of aquaporins to noninvasively monitor the location and function of genetically engineered devices in live animals.


Subject(s)
Aquaporins , Diffusion Magnetic Resonance Imaging , Animals , Genes, Reporter , Diffusion Magnetic Resonance Imaging/methods , Monte Carlo Method , Diffusion , Water , Aquaporins/genetics , Molecular Imaging , Computer Simulation
12.
Front Neuroinform ; 17: 1208073, 2023.
Article in English | MEDLINE | ID: mdl-37603781

ABSTRACT

Monte-Carlo diffusion simulations are a powerful tool for validating tissue microstructure models by generating synthetic diffusion-weighted magnetic resonance images (DW-MRI) in controlled environments. This is fundamental for understanding the link between micrometre-scale tissue properties and DW-MRI signals measured at the millimetre-scale, optimizing acquisition protocols to target microstructure properties of interest, and exploring the robustness and accuracy of estimation methods. However, accurate simulations require substrates that reflect the main microstructural features of the studied tissue. To address this challenge, we introduce a novel computational workflow, CACTUS (Computational Axonal Configurator for Tailored and Ultradense Substrates), for generating synthetic white matter substrates. Our approach allows constructing substrates with higher packing density than existing methods, up to 95% intra-axonal volume fraction, and larger voxel sizes of up to 500µm3 with rich fibre complexity. CACTUS generates bundles with angular dispersion, bundle crossings, and variations along the fibres of their inner and outer radii and g-ratio. We achieve this by introducing a novel global cost function and a fibre radial growth approach that allows substrates to match predefined targeted characteristics and mirror those reported in histological studies. CACTUS improves the development of complex synthetic substrates, paving the way for future applications in microstructure imaging.

13.
Data Brief ; 38: 107429, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34632021

ABSTRACT

The methodological development in the mapping of the brain structural connectome from diffusion-weighted magnetic resonance imaging (DW-MRI) has raised many hopes in the neuroscientific community. Indeed, the knowledge of the connections between different brain regions is fundamental to study brain anatomy and function. The reliability of the structural connectome is therefore of paramount importance. In the search for accuracy, researchers have given particular attention to linking white matter tractography methods - used for estimating the connectome - with information about the microstructure of the nervous tissue. The creation and validation of methods in this context were hampered by a lack of practical numerical phantoms. To achieve this, we created a numerical phantom that mimics complex anatomical fibre pathway trajectories while also accounting for microstructural features such as axonal diameter distribution, myelin presence, and variable packing densities. The substrate has a micrometric resolution and an unprecedented size of 1 cubic millimetre to mimic an image acquisition matrix of 40 × 40 × 40 voxels. DW-MRI images were obtained from Monte Carlo simulations of spin dynamics to enable the validation of quantitative tractography. The phantom is composed of 12,196 synthetic tubular fibres with diameters ranging from 1.4 µm to 4.2 µm, interconnecting sixteen regions of interest. The simulated images capture the microscopic properties of the tissue (e.g. fibre diameter, water diffusing within and around fibres, free water compartment), while also having desirable macroscopic properties resembling the anatomy, such as the smoothness of the fibre trajectories. While previous phantoms were used to validate either tractography or microstructure, this phantom can enable a better assessment of the connectome estimation's reliability on the one side, and its adherence to the actual microstructure of the nervous tissue on the other.

14.
Front Neuroinform ; 14: 8, 2020.
Article in English | MEDLINE | ID: mdl-32210781

ABSTRACT

Monte-Carlo Diffusion Simulations (MCDS) have been used extensively as a ground truth tool for the validation of microstructure models for Diffusion-Weighted MRI. However, methodological pitfalls in the design of the biomimicking geometrical configurations and the simulation parameters can lead to approximation biases. Such pitfalls affect the reliability of the estimated signal, as well as its validity and reproducibility as ground truth data. In this work, we first present a set of experiments in order to study three critical pitfalls encountered in the design of MCDS in the literature, namely, the number of simulated particles and time steps, simplifications in the intra-axonal substrate representation, and the impact of the substrate's size on the signal stemming from the extra-axonal space. The results obtained show important changes in the simulated signals and the recovered microstructure features when changes in those parameters are introduced. Thereupon, driven by our findings from the first studies, we outline a general framework able to generate complex substrates. We show the framework's capability to overcome the aforementioned simplifications by generating a complex crossing substrate, which preserves the volume in the crossing area and achieves a high packing density. The results presented in this work, along with the simulator developed, pave the way toward more realistic and reproducible Monte-Carlo simulations for Diffusion-Weighted MRI.

SELECTION OF CITATIONS
SEARCH DETAIL